VC++计算精解
不动点迭代
数学原理
不动点迭代是一种求方程 x = g ( x ) x = g(x) x=g(x) 的近似解的数值方法。该方法有几个要点:
- 定义一个迭代函数 g ( x ) g(x) g(x),从一个初始值 x 0 x_0 x0 出发,反复计算 x n + 1 = g ( x n ) x_{n+1} = g(x_n) xn+1=g(xn)。
- 反复计算的过程就是逼近方程的解的过程。
- 注意,要有一个初始值,这个初始值就是这初始解,那么这个值如何得来?一般来说先用二分法求得解的大致区间,然后再用不动点迭代求更精确的解。
- 下面是该方法涉及的一些基本概念
- 一个点 x ∗ x^* x∗ 满足 g ( x ∗ ) = x ∗ g(x^*) = x^* g(x∗)=x∗,称为 g ( x ) g(x) g(x) 的不动点。
- 唯一不动点: g ( x ) g(x) g
VC++不动点迭代计算精解

最低0.47元/天 解锁文章
2658

被折叠的 条评论
为什么被折叠?



