人工智能与机器学习:现状、应用与未来趋势
1. 深度学习与NIPS会议的起源
深度学习的发展源远流长,可追溯到年度神经信息处理系统(NIPS)会议及其早期先驱。20世纪80年代,工程师、物理学家、数学家、心理学家和神经科学家齐聚NIPS会议,共同探索人工智能的新方法。1987年,第一届NIPS会议在丹佛科技中心举行,有400名参会者。与专注于狭窄研究领域的学术会议不同,早期NIPS会议的科学多样性令人惊叹。尽管不同学科之间存在文化障碍,但在会议后的基斯通研讨会上,跨学科交流真正开始。
NIPS会议能年复一年地持续举办,主要得益于两方面因素。一是大家对基于生物启发学习算法解决复杂计算问题的兴奋感;二是信息理论家埃德·波斯纳(Ed Posner),他有长远的视野,创立了神经信息处理系统基金会来管理会议。埃德赋予了NIPS独特的智慧、实用智慧和幽默感,他还是一位鼓舞人心的老师和有效的领导者。他招募了菲尔·索特尔(Phil Sotel)作为公益法律顾问,确保NIPS在发展过程中不偏离轨道。
NIPS会议的总主席都是杰出的科学家和工程师,如斯科特·柯克帕特里克(Scott Kirkpatrick)发明了模拟退火算法,塞巴斯蒂安·特伦(Sebastian Thrun)赢得了2005年DARPA自动驾驶汽车挑战赛,达芙妮·科勒(Daphne Koller)共同创立了Coursera。
1.1 大数据推动深度学习发展
大数据是深度学习腾飞的关键因素。过去,一太字节的数据需要一整排计算机来存储,如今,一个记忆棒就能存储这么多数据。互联网公司的数据中心存储着大量的拍字节数据,全球数据量自20世纪80年代以来每三年就会翻一番。没有互联网上数百万的图像和其他标
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



