面部动作跟踪技术解析
1. 引言
面部动作跟踪在计算机视觉、人机交互等领域有着广泛的应用。本文将深入探讨参数化面部模型的基础知识、跟踪的基本策略和方法,以及一些具体的跟踪算法示例。
2. 参数化面部建模
参数化面部建模有多种方式,其选择取决于应用场景、可用资源和显示设备等因素。常见的建模类型包括:
- 三维运动和姿态 :头部的动态三维位置和旋转,非刚性面部/头部跟踪需为视频序列的每一帧估计这些参数。
- 面部动作 :如嘴唇和眉毛的运动,通过非刚性跟踪进行估计。
- 形状和特征配置 :头部、面部及面部特征(如嘴巴、眼睛)的形状,可通过对齐或面部地标定位方法进行估计。
- 光照 :不同光照条件导致的外观变化。
- 纹理和颜色 :描述皮肤的图像模式。
- 表情 :肌肉合成的情绪,使面部呈现出如快乐或悲伤的表情。
不同的应用场景对模型参数的需求不同。例如,头部跟踪器通常旨在提取三维运动参数,而对其他参数保持不变;对用户情绪敏感的用户界面则需要提取表情参数;识别系统通常应对除形状和纹理参数之外的所有参数保持不变。
2.1 特征脸(Eigenfaces)
特征脸是一种流行的统计纹理模型,用于面部图像分析。其基本思想是收集并注册一组面部图像训练集,将每个图像重塑为向量,然后对训练集进行主成分分析(PCA)。主成分被称为特征脸。一个面部图像(向量
超级会员免费看
订阅专栏 解锁全文
17万+

被折叠的 条评论
为什么被折叠?



