Tensorflow安装踩坑记录

Tensorflow安装踩坑记录

前段时间购置了3070ti,我欢天喜地地以为我的深度学习之旅就要顺利开始了,但我完全没意识到,这是我漫漫踩坑之路的开始。

如无特殊提示,以下均使用使用anaconda+python3.7进行安装

Tensorflow安装版本选取

  1. 参阅官网,根据GPU型号选择合适的CUDA和CUDnn版本
  2. 要注意如果在安装CUDA的时候提示:you have installed a higher version of frameview SDK,那么要到控制面板里面卸载frameview SDK(这个软件实际上是在安装显卡驱动的时候顺带安装的,用来检测游戏进行时的显卡性能,所以放心卸载即可),写在完成后CUDA便能顺利安装。

我的显卡是3070ti,因此选取了CUDA11.2和cudnn8.2,cudnn的压缩包下载之后解压到下图列出的文件夹中即可

  1. 选择CUDA和CUDnn版本之后,要参考

在 Windows 环境中从源代码构建  |  TensorFlow (google.cn)

选择tensorflow的gpu版本。在安装tensorflow之类的环境时,往往面临着库的版本冲突,旧版本缺失之类的问题,一定要记住创建虚拟环境来安装你做每个项目需要的库。

创建虚拟环境:

Conda create -n your_env_name(你的虚拟环境的名称) python = 3.x(版本号自己选取,我选的是3.7)

然后再激活虚拟环境:(一定要记得激活,要不然会安装在外部环境里面,删除起来又是好多功夫)

conda activate your_env_name

在虚拟环境中安装,在激活虚拟环境之后,pip install即可

如果下载速度较慢,记得换下载的镜像源:

​
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free

conda config --set show_channel_urls yes

​
  1. 如果在安装完成之后提示:

1.依赖的库缺失,即cuda64——110、101.dll缺失,首先明确一点,CUDA和CUDnn都是没问题的,其次检查是不是安装了多个tensorflow的版本,删除掉多余的版本,然后重装tensorflow能最快解决此类问题

2.tensorflow在使用时提示,tensorflow没有session、constant之类的attribute(我不确定attribute用中文怎么表述成术语),这是因为安装的tensorflow版本过高,在tensorflow2.x版本中已经没有这些属性了,因此要使用tensorflow.compat.v1.session来使用session之类的attribute

但是这样子就导致了我们原本使用tensorflow1.x版本时只需要打一个tf就能使用的attribute变得很冗长,可以考虑使用(12条消息) tensorflow.compat.v1_qwertylffFrieda的博客-CSDN博客 的方法:

Import tensorflow as tf2

tf = tf2.compat.v1  来使用tensorflow version1的attribute

 

之后,在终端中测试的时候,出现了上图中的错误,session graph is empty

这是由于v1中没有构建图就无法运行,所以要禁用tf2中的eager_execution模块,上面的session就能正常运行了

此外,在使用vscode的过程中,出现了虚拟环境选择正确却无法识别tensorflow库的问题,而可以看见在上图中tensorflow是正确安装在虚拟环境下的,这一问题暂未找到完美的解决方案,改用pycharm这一编译器之后规避了这种问题。

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值