代码随想录刷题第38天|509,70,746

本文介绍了如何运用动态规划解决斐波那契数列、爬楼梯问题以及一个涉及最小花费的爬楼梯问题。通过实例展示了如何定义dp数组、递推公式、初始化和遍历过程,以求解这些问题的最优解。
摘要由CSDN通过智能技术生成

509

dp[i]就是由前两位推出来的,那么也不用dp数组

动态规划5步:

确立dp数组含义

递推公式

初始化dp

遍历顺序

打印

class Solution:
    def fib(self, n: int) -> int:
        if n==0:
            return 0
        dp=[0]*(n+1)
        dp[0]=0
        dp[1]=1
        for i in range(2,n+1):
            dp[i]=dp[i-1]+dp[i-2]
        return dp[n]

70.爬楼梯

第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划

class Solution:
    def climbStairs(self, n: int) -> int:
        if n<=1:
            return n#n为1的情况可输出
        dp=[0]*(n+1)
        dp[1]=1
        dp[2]=2
        for i in range(3,n+1):
            dp[i]=dp[i-1]+dp[i-2]
        return dp[n]

746,使用最小花费爬楼梯

题目中说 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯” 也就是相当于 跳到 下标 0 或者 下标 1 是不花费体力的, 从 下标 0 下标1 开始跳就要花费体力。

class Solution:
    def minCostClimbingStairs(self, cost: List[int]) -> int:
        dp=[0]*(len(cost)+1)
        #初始值和第一步不消耗体力
        dp[0]=0
        dp[1]=0
        for i in range(2,len(cost)+1):
            dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])
        return dp[len(cost)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值