
聊天机器人
智能对话机器人、智能问答、机器学习、自然语言处理、知识图谱、自然语言理解和语音识别等。
Chatopera 研发团队
https://www.chatopera.com 北京华夏春松科技有限公司:为企业交付智能客服系统、智能对话机器人、机器人客服、Chatbot。
-
原创 入门机器学习?好好看看《智能问答与深度学习》随书附带源码
目录《智能问答与深度学习》随书附带源码安装依赖软件下载源码执行示例程序取得帮助第二章 机器学习基础第三章 自然语言处理基础第四章 深度学习初步第五章 词向量实现及应用第六章 社区问答中的 QA 匹配在线讲解推荐阅读《智能问答与深度学习》随书附带源码《智能问答与深度学习》 这本书是服务于准备入门机器学习和自然语言处理的学生和软件工程师的,在理论上介绍了很多原理、算法,同时也提供很多示例程序增加实践性,这些程序被汇总到示例程序代码库,这些程序主要是帮助大家理解原理和算法的,欢迎大家下载和执行。代码库的地址是2021-02-27 09:59:10107
0
-
原创 见解深刻的人工智能书籍,《智能问答与深度学习》加速自然语言理解技术普及 | Chatopera
风雨送春归,飞雪迎春到。已是悬崖百丈冰,犹有花枝俏。俏也不争春,只把春来报。待到山花烂漫时,她在丛中笑。《智能问答与深度学习》一书,入选京东好物”见解深刻的人工智能精选“书籍,截至目前本书共获得 7,688 条评价,98% 好评率,大家对本书最多的评价就是对经典算法的详细说明,引用大量公式,对人工智能、信息论和通信原理之间关系的阐明,以下节选一些网友评价。网友A:该书介绍了近年来自然语言处理和机器阅读的成果,带有翔实的示例,对实际应用有很好的借鉴意义。由浅入深地介绍了人工智能在文本任务中的应用。网友2021-02-25 12:03:57109
0
-
原创 Feishu(飞书) 聊天机器人应用(3/3)- DevOps 机器人助手,管理 GitLab Issues,BOT 开源示例程序
目录DevOps 机器人助手命令示例配置使用创建机器人设置环境变量GITLAB_URLPRIVATE_TOKENVALID_PROJECTS修改对话使用帮助本系列文章在上一篇文章:Feishu(飞书) 聊天机器人应用(2/2)- 定制对话,实现知识库、信息查询、意图识别、多轮对话,详细的梳理了应用飞书开放平台,开发者中心,上线 Custom App 的过程,并且导入了对话机器人,以飞书作为 渠道,以 Chatopera 机器人平台管理对话,本文则继续关注在飞书上线机器人系列,讲述如何为机器人增加对话,并且2021-02-09 12:11:50665
4
-
原创 Feishu(飞书) 聊天机器人应用(2/3)- 定制对话,实现知识库、信息查询、意图识别、多轮对话
目录Chatopera 飞书 Custom App开源项目快速开始创建 Feishu Bot 应用创建 Chatopera Bot 应用编辑描述文件安装依赖启动服务配置 Feishu Custom App 消息事件订阅发布上线机器人开发获得帮助与支持References开源许可协议本系列飞书应用开发的上一篇文章Feishu(飞书) 聊天机器人应用(1/2)- 开发快速入门,本文侧重结合飞书和 Chatopera 服务上线智能对话机器人应用。在前一篇文章中,重点介绍了在飞书群里使用 Custom Bot,2021-02-06 12:45:16839
0
-
原创 标准化智能对话机器人开发,Chatopera 云服务做到了 | Chatopera 让聊天机器人上线
人们在期盼着人工智能时代,人机交互的新纪元的到来,这会影响我们的生活方方面向,对于企业而言,正在迎来大规模自动化的浪潮。基于自然语言的人机对话,是这个浪潮中的 Killer App 吗?Chatopera 相信。Chatopera 推出标准化开发工具,帮助开发者和企业定制聊天机器人。Chatopera 机器人平台的深度介绍,在一个小时内,入门智能对话机器人开发 定制智能对话机器人 Chatbot,使用 Chatopera2021-01-27 14:45:02270
0
-
原创 中文近义词工具包,Synonyms 发布新版本 v3.16,支持词汇表扩大至 40w+
https://github.com/chatopera/Synonyms增大词向量到 40W+ 词汇,优化下载速度。自从 Synonyms 发布以来,得到开源社区用户的关注,在 GitHub 上下载、交流和贡献 PR。Synonyms 对各种自然语言处理任务都有帮助,比如聚类分析、自动摘要、搜索、知识图谱和智能对话机器人、聊天机器人等。在 GitHub 被近百个项目标识使用了 Synonyms,以及上百个反馈 Issue,对此 Chatopera 团队非常感谢给予贡献和反馈建议的各位开源朋友!近期2021-01-08 08:15:48287
6
-
转载 智能对话机器人:自然语言处理与人机交互
这是一部讲解如何基于NLP技术和人机交互技术实现聊天机器人的著作。两位作者聊天机器人领域均有多年大型项目的实战经验,这本书不仅讲解了NLP和人机交互的核心技术,而且从技术、算法、实战3个维度讲解聊天机器人的原理、实现与工程实践。《会话式AI:自然语言处理与人机交互》有3个特点:前瞻性强,专注于NLP和人机交互的前沿技术,以及会话式AI技术在热门场景中的工程实践。实战性强,每章都提供实战代码,大部分代码简单修改后便可在实际场景中使用;数据集并非简单构造,而是具有真实性。对比性强,结合应用场景,对比2021-01-02 17:47:42304
0
-
转载 如何对智能对话机器人的智能化水平分类
目录5 个等级L1 单向推送L2 单轮问答L3 多轮对话L4 个性化对话L5 多机器人协作参考文档5 个等级L1 单向推送机器人可向用户推送消息,但没有对话能力。L1级别的对话机器人,只具备向用户单向推送的能力。今天,我们所使用的App、微信公众号都会使用这种方式与用户交互。这种方式的好处是受众广,效率高;缺点是用户只能被动接收推送,无法和机器人进行对话交互。因此,L1级别的机器人在严格意义上不能被称为“对话机器人”。L2 单轮问答机器人能回答用户的常见问题,但没有上下文理解能力,无法主动与2021-01-02 17:41:37167
0
-
原创 Feishu(飞书) 聊天机器人应用(1/3)- 开发快速入门
目录注册飞书创建 APP申请权限发布新版本激活并配置获得组织成员信息获得 access token获得用户的 open_id创建 BOT推送纯文本消息推送富文本消息发布给所有飞书用户参考文档注册飞书注册为飞书用户,创建组织https://www.feishu.cn/成为飞书开发者https://open.feishu.cn/?lang=en-US创建 APP申请权限加入我们要开发 Chatbot, 获得管理组织信息。在 Permissions 相关区域选择对应的权限,这时会提示2020-12-29 19:41:542093
8
-
原创 对话式服务思考,如何在 Messenger 用聊天机器人做好客户服务
目录有没有这样的经历设计聊天机器人的定位和画像聊天机器人的对话结构新手引导和帮助添加对话能力添加产品介绍添加业务联系添加体验技能处理错误示例程序接下来有没有这样的经历作为一位在 Facebook 的用户,阿成也经常在 Facebook 上获得游戏的介绍信息,阿成经常在休闲时刻玩一会,通过这些游戏,阿成认识了一些朋友,让生活更有趣。一天阿成看到了一个朋友分享的游戏介绍,这款游戏很吸引阿成,于是他打开了这款游戏的 Facebook Page,阿成想了解游戏的角色和玩法,这时他点击了“发消息”,发送了咨询问题2020-12-01 13:46:02273
0
-
原创 开源项目 Chatopera FMC, 快速构建 Facebook Messenger 聊天机器人服务,让聊天机器人上线!
Facebook Messenger 是一个即时通信软件,聊天机器人服务是 Messenger 很重要的组成部分,也是有别于其它 IM 软件的一个亮点,为用户和企业带来了很多创新的机会。如何使用开源项目,来上线 Messenger 的 Chatbot 服务呢?Chatopera 推出 Chatopera FMC,即 Facebook Messenger Connector for Chatopera 来完成这个目的。项目地址:https://github.com/chatopera/chatop2020-11-30 09:59:49376
2
-
原创 聊天机器人之网页测试程序 Chatopera Test Client
Chatopera/webchatGitee | CodeChina | GitHub本开源项目发布Node.js, React 程序,完成使用 Web 浏览器连接 Chatopera 机器人平台,和聊天机器人对话。本程序发布的目的,主要是在集成聊天机器人时,作为示例程序参考。Featured提供对话页面,方便系统集成测试使用 Bot Provider 地址,clientId 和 secret 连接机器人实现 Dialogue Management: 融合意图识别检索、多轮对话检索和知识库检2020-11-07 12:34:41658
2
-
原创 【直播】在 Chatopera 云服务定制您的聊天机器人
活动介绍时间: 2020-11-06 19:30- 21:30形式与地点: ZOOM 线上会议组织:Bot Friday分享人王海良个人简介:Chatopera 联合创始人 & CEO,运营 Chatopera 聊天机器人平台,https://bot.chatopera.com。2011 年毕业于北京邮电大学,后加入 IBM 工作四年,先后工作于软件开发实验室和创新中心。从 2016 年开始工作于创业公司,三角兽 AI 算法工程师,呤呤英语 AI 产品负责人,负责智能对话系统研发。分2020-11-03 14:56:30435
1
-
转载 聊天机器人之 BERT4Rec, 使用Bert进行序列推荐
目录0. 本文概览1. BERT4Rec简介2. 背景3. BERT4Rec模型介绍3.1 问题定义3.2 模型结构3.4 Embedding层3.5 Output层3.6 模型训练和预测4. 实验5. 个人感悟6. Reference0. 本文概览今天给大家介绍一篇BERT用于推荐系统的文章,题目是《BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer》,文章作者都2020-10-20 14:24:03700
1
-
转载 透过Gartner 2020年人工智能技术成熟度曲线看新的变化
2020 企业在 AI 方面的投资根据Gartner最近的一项调查显示,自疫情爆发以来,有47%的企业组织在人工智能(AI)方面的投资维持不变,有30%的企业组织计划增加AI投资。30%的CEO表示,所在的企业组织已经有 AI 项目,并定期重新定义资源、报告结构和系统,以确保项目取得成功。尽管存在更大的经济和社会不确定性,但医疗、生物科学、制造、金融服务、供应链等领域的 AI 项目仍将继续加速发展。今年Gartner的AI技术成熟度曲线包含了5个新技术类别:小数据、生成型AI、复合型AI、负责任的A2020-10-19 11:14:181016
0
-
转载 Rasa 中文聊天机器人项目
Rasa 中文聊天机器人项目RASA 开发中文指南系列博文:Rasa中文聊天机器人开发指南(1):入门篇Rasa中文聊天机器人开发指南(2):NLU篇Rasa中文聊天机器人开发指南(3):Core篇Rasa中文聊天机器人开发指南(4):RasaX篇Rasa中文聊天机器人开发指南(5):Action篇注:本系列博客翻译自Rasa官方文档,并融合了自己的理解和项目实战,同时对文档中涉及到的技术点进行了一定程度的扩展,目的是为了更好的理解Rasa工作机制。与本系列博文配套的项目GitHub地址2020-10-16 17:03:08613
0
-
转载 聊天机器人设计思考
本文在转载过程中,在原文基础上略有调整,不代表原文观点目录Conversational Robot名词解释(非专业,非官方,非权威)对话系统(dialogue system / dialog system)问答系统(question answering system)问答对(QA pairs)基于知识的问答(knowledge based QA)基于检索的问答(Retrival-based QA)一个简单搜索回答的流程其他类型问答聊天机器人(chatbot)DeepQA人工智能标记语言,AIML基于深.2020-10-16 16:59:54404
0
-
原创 开源语义理解框架 Clause API 文档:快速实现聊天机器人
在上一篇文章《基于开源语义理解框架 Clause 实现聊天机器人》 中,很多读者关心如何使用 Clause,在 Clause Wiki 文档中心 中也有很多指导使用的资料,现将 API 使用整理如下。开源语义理解框架 Clause API 文档Clause 使用过程:服务端为 C++ 实现,并基于 Apache Thrift 框架实现跨语言 PRC SDK。服务端已经封装为 Docker 镜像编排服务,部署简单。 SDK 支持多种语言,参考 示例程序。Table of contents服2020-10-15 14:52:222239
5
-
原创 Clause 开发技能之 CMake 进阶教程(一)
开源语义理解项目 Clause 的基本开发技能就是围绕 C++ 的工程展开,使用 CMake 管理依赖,项目描述。需要掌握 CMake,C++。https://github.com/chatopera/clauseClause 使用了很多好的开源的 C++ 的项目的经验,初学 C++ 需要自行研究。以下文章对一些基础知识进行概述。目录CMake 快速开始一键执行基础知识示例程序t1t2t3t4t5t6执行全部示例GUI使用 Docker 容器实战进阶本系列文章CMake 快速开始快速开始使用 C2020-10-12 12:38:261043
5
-
原创 Clause 开发技能之 CMake 进阶教程(三)
书接上文:https://chatopera.blog.csdn.net/article/details/109025400本文转载自【使用 CMake 组织 C++工程】3:CMake 函数和宏前言这篇文章分享一下 CMake 中函数:function, 和宏:macro 的使用。本文先从二者区别说起,由于二者区别很小,所以后文就仅对函数的用法进行讨论,因为函数有作用域的概念,适用范围更广。后文分享一个很实用的递归函数用于包含指定目录的所有子目录。CMake 中 function 和 macro2020-10-12 12:30:51140
0
-
原创 Clause 开发技能之 CMake 进阶教程(二)
开源语义理解项目 Clause 的基本开发技能就是围绕 C++ 的工程展开,使用 CMake 管理依赖,项目描述。需要掌握 CMake,C++。https://github.com/chatopera/clauseClause 使用了很多好的开源的 C++ 的项目的经验,初学 C++ 需要自行研究。以下文章对一些基础知识进行概述。前言这篇文章将介绍一个稍微复杂一些的 CMake 工程,结合这个工程总结一下在组织一个 C/C++工程时最为常用的一些 CMake 命令和变量。对于涉及到的命令和变量,介2020-10-12 12:29:25166
0
-
原创 聊天机器人 2017
目录概述聊天机器人聊天机器人模型分类基于检索的模型基于生成的模型长对话和短对话开放领域和封闭领域挑战关联上下文意图识别如何判断一个模型的好坏一种设想问题域Conversation Model低成本的构建对话能区分不同类型的对话规范化输入高效率的规则引擎用户画像开源的脚本引擎对话脚本快速开始未来发展数据预处理中文分词jieba分词的实现自定义字典Word embeddingWord2vecSeq2Seq使用DeepQA2训练语言模型预处理开始训练Model提供服务使用脚本对模型的评价有待改进的地方本系列文章延2020-10-12 12:09:07629
1
-
原创 聊天机器人之 RNN, LSTM and Sequence2Sequence 介绍
RNNRNN(Recurrent Neural Networks,循环神经网络)不仅会学习当前时刻的信息,也会依赖之前的序列信息。由于其特殊的网络模型结构解决了信息保存的问题。所以RNN对处理时间序列和语言文本序列问题有独特的优势。递归神经网络都具有一连串重复神经网络模块的形式。在标准的RNNs中,这种重复模块有一种非常简单的结构。那么S(t+1) = tanh( U*X(t+1) + W*S(t))。tanh激活函数图像如下:激活函数tanh把状态S值映射到-1和1之间.RNN通过BPTT算2020-10-12 11:48:29134
0
-
转载 深度解析TensorFlow组件Estimator:构建自定义Estimator
Have you ever wondered what’s the magic behind the tutorials on Large-scale Linear Modelsand Wide & Deep Learning? I hope this post would at least point you to the right direction.你是否思考过TensorFlow的tutorial和其背后的“魔力”?希望这篇文章至少能给你思考的正确方向。TensorFlow的基本概念可2020-10-12 09:25:39265
0
-
原创 聊天机器人活动的精彩视频来了 @ 2016
本篇文章是 2016 年 12月,我组织的一个聊天机器人线下交流活动的总结聊天机器人活动的精彩视频来了!- 6行JavaScript搞定微信机器人(上) -李卓桓, PreAngel天使投资人- 6行JavaScript搞定微信机器人(下) -李佳芮, 小桔机器人创始人- Chatbot的应用场景 -王守崑, 爱因互动创始人兼CEO在历史上,人工智能多次被炒火,我相信,这一次:AI is here to stay.更多本次活动的照片https://github.com/c2020-10-12 09:21:59114
0
-
原创 Items and Model Understanding,Tensorflow中的一些概念
介绍tensor, tf.placeholder, tf.flag, tf.name_scope, tf.session 等概念。tensor: Tensors are like geometric vectors, scalars, multidimensional array and other tensors. We can do dot product, the cross product, and linear maps between tensors. The first-order tens2020-10-12 09:16:1481
0
-
原创 TensorFlow 多机分布式部署
A brief tutorial on how to do asynchronous and data parallel training using three worker machines.简要介绍如何异步执行训练任务,通过三台服务器运行 TensorFlow 集群。TL;DR;A brief tutorial on how to do asynchronous and data parallel training using three worker machines with each o2020-10-12 09:14:04252
0
-
原创 聊天机器人 2016
作为一名程序员,我希望机器能做的事情就不要让人去做。我相信分享能促进创造,不断的创造会让人更加有智慧。毕竟随着年龄的增长,不再具有年轻时的体魄,更要靠大脑做事。我总是希望自己的工作的内容是创新的,流程是自动的,效率是恐怖的。那要怎样才能实现这个目标呢?马克思说:人的本质是社会关系的总和,科学技术是人体器官的延伸。我们可以将这句话分别理解一下:人的本质是社会关系的总和Organizations which design systems are constrained to produce system2020-10-12 09:09:06102
0
-
原创 快速开始 tf.contrib.learn
tf.contrib.learn是TensorFlow的高级API库。https://github.com/chatopera/tensorflow-getstartedTL; DRWrite down output of tf.contrib.learn Quickstart from tensorflow.org.git clone git@github.com:chatopera/tensorflow-getstarted.git cd tensorflow-getstarted/tf-c2020-10-12 09:03:48103
0
-
原创 Tensorflow tf.app.run 的工作方式
To run a tensorflow app, you define the input, lost fn, model and EvaluationMonitor in a main function in your module like this.执行 TensorFlow 的应用,需要定义输入、输入、网络模型和评估监控在主函数中,主函数要包含上述信息。Like this,举例如下:import tensorflow as tfdef main(unused_argv): hparams2020-10-12 08:59:1794
0
-
原创 如何使用 TensorFlow Tensorboard 观察训练,调节参数
A brief and concise tutorial on how to visualize different aspects such as the loss of your neural network using tensorboard.TL;DRA brief and concise tutorial on how to visualize different aspects such as the loss of your neural network using tensorboard2020-10-12 08:51:09160
0
-
原创 Resolve segmenter to process Chinese Dialogues with jieba, langid, stanford segmenter
During generating a word2vec model with Chinese data, it is very important to segment the Chinese sentences.在处理中文数据,训练词向量模型时,中文自动分词怎么办?Fortunately, there are some awesome utilities which are introduced online.幸运的是,互联网上有多个开源的工具完成分词。JavaBuilt by Stanfor2020-10-12 08:43:52109
0
-
原创 Word embeddings 与相关应用
词向量是将文字数学化的方法。自然语言处理中文本数值化表方法词向量是什么,自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化,NLP中大多是将文本表示为空间向量后再进行处理。离散表示: One-hot比如,语料库:John likes to watch movies. Mary likes too. John also likes to watch football games.由语料库得到字典:{ "John": 1, "likes": 2, "to2020-10-12 08:40:30143
0
-
原创 聊天机器人之Ubuntu Dialogue Corpus 聊天语料介绍
Corpus Featureshttps://github.com/chatopera/ubuntu-ranking-dataset-creator此 Ubuntu 语料既有 Dialog State Tracking Challenge 数据集的多次序对话特性,也有类似 Twitter 微博服务上的人类自然对话特点,但是它比 Dialog State Tracking Challenge 数据集大几个数量级。另外,相对于用于机器问答和分析的同等数量级Twitter数据集,Ubuntu 数据是基于特定领2020-10-12 08:38:31249
1
-
原创 基于开源语义理解框架 Clause 实现聊天机器人
Chatopera Language Understanding Service,Chatopera 语义理解服务https://github.com/chatopera/clauseClause Quick Start Guide / Clause 快速开始Chatopera Language Understanding Service,Chatopera 语义理解服务前提已部署 Clause 服务,参考部署文档下载镜像下载示例代码git clone https://github.c2020-10-11 19:32:571995
5
-
原创 搜集网络上比较好的中文语料库
国内可用免费语料库组织,机构发布国家语委国家语委现代汉语语料库http://www.cncorpus.org/现代汉语通用平衡语料库现在重新开放网络查询了。重开后的在线检索速度更快,功能更强,同时提供检索结果下载。现代汉语语料库在线提供免费检索的语料约2000万字,为分词和词性标注语料。古代汉语语料库http://www.cncorpus.org/login.aspx网站现在还增加了一亿字的古代汉语生语料,研究古代汉语的也可以去查询和下载。同时,还提供了分词、词性标注软件、词频统计、字频统计软件2020-10-11 13:07:38746
0
-
原创 中文分词及词性标注
支持中文分词(N-最短路分词、CRF分词、索引分词、用户自定义词典、词性标注),命名实体识别(中国人名、音译人名、日本人名、地名、实体机构名识别),关键词提取,自动摘要,短语提取,拼音转换,简繁转换,文本推荐,依存句法分析(MaxEnt依存句法分析、CRF依存句法分析)TL;DR启动服务docker pull samurais/hanlp-api:1.0.0docker run -it --rm -p 3002:3000 samurais/hanlp-api:1.0.0访问服务中文分词P2020-10-11 13:03:53712
0
-
原创 词频和逆文档频率算法 TF-IDF
词频和逆文档频率算法简单快速,结果处理符合实际情况,可以用在关键词提取,信息检索等很多地方。如果我们有一篇很长的文章,如何获得关键词呢?根据信息熵理论,一个词出现的次数越多,这个词包含的信息量就越小。可以说,TF-IDF算法就是基于这一理论的。这篇文章我们称之为Document, 这篇文章属于一个 Collection(集合)。TF, Term Frequency, 词频IDF, Inverse Document Frequency, 逆文档频率处理将Document进行分词,去停留词。计2020-10-11 12:59:38563
0
-
原创 Word2Vec - gensim模块(2/3)
Word2Vec完成了从文字,句子到空间向量的映射,是计算相似度和检索常用的方法。在使用机器学习技术训练文本以前,常用来做Word Embedding。在上一篇中,给出了相似性计算的原理,本篇介绍在python环境下一个快速完成word2vec训练和使用的工具包。Get started gensimhttps://github.com/Samurais/word2vec_get_started训练构建词汇表dict将文件(doc collection)按行处理成向量corpus2020-10-11 12:51:51133
0
-
原创 Word2Vec - 余弦相似性数学原理(1/3)
判断两个文章或者句子相似程度的一个算法。根据向量坐标,绘制在空间中,求得夹角的Cos值。Cos值越接近1,则说明夹角越小,即两向量相似。余弦相似性: 通过计算两个向量的夹角余弦值来评估他们的相似度。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似。给定两个句子A: 我喜欢足球,也喜欢篮球。B: 我喜欢足球,不喜欢篮球。对句子进行分词,并统计词频分词A:我/ 喜欢/ 足球/ ,/ 也/ 喜欢/ 篮球 /。B:我/ 喜欢/ 足球/ ,/ 不/ 喜欢/ 篮球/ 。出现的所有的词语2020-10-11 12:50:14259
0