YOLO系列解读
文章平均质量分 85
samylee
机器之眼,看到你看不到的!
展开
-
YOLO系列解读DAY2—YOLOV1预测代码转换
需要注意yolov1全连接层的数据排序,其输出的channels=(S*S*(5*B+C))=1470,前7x7x20存储的是voc20类的概率,中间7x7x2存储的是2个矩形框的目标概率,最后7x7x2x4存储的是2个矩形框的边框信息。从上图可以看出yolov1-tiny的网络架构较为简单,只是采用卷积层和全连接层累加的形式,但并不能否认该网络在当时是开山之作,后面的架构都是基于该架构的思想进行创作的!小伙伴们好,博主很久没有写博客了,略感生疏,不到之处敬请谅解,欢迎指出文中错误,大家一起探讨。原创 2023-08-19 16:49:33 · 299 阅读 · 0 评论 -
YOLO系列解读DAY1—YOLOV1预训练模型
博主暂未加PyTorch的训练代码,因ImageNet训练时间较长,所以直接使用了Extraction的网络模型,若有需要的小伙伴可以评论或私信给博主,博主可添加Extraction分类网络的PyTorch的训练方法。小伙伴们若能坚持完成YOLO系列的代码和原理学习,相信能对图像检测任务有个全新的认识,跟随博主的脚步,培养自己的动手能力吧!2、Darknet存储参数的序列和PyTorch稍有不同,若遇到BatchNorm架构的卷积层,Darknet会先存储BatchNorm层的参数,进而存储卷积层的参数;原创 2023-08-17 11:20:44 · 466 阅读 · 6 评论