排序:
默认
按更新时间
按访问量

MTCNN算法提速应用(ARM测试结果评估)

经博主测试,mtcnn原三层网络如果用于工程测试,误检情况严重,在fddb上测试结果也是,经常将手或者耳朵检测为人脸,这个很头疼(因为标注数据!),所以重新训练显得尤为重要! 博主的改进方法及如何重新训练的就不具体介绍了,主要思想就是用卷积取代池化,fddb测试离散ROC88!   注意:某...

2017-11-02 10:48:05

阅读数:11033

评论数:28

mtcnn行人检测(CPU)

最重要的:万级别数据 速度:640x480(30-minsize)(实时) 准确率:   Reference: https://github.com/samylee/mtcnn_person 任何问题请加唯一QQ2258205918(名称samylee)!...

2017-10-19 21:06:37

阅读数:5969

评论数:6

opencv341的ssd_mobilenet应用之cpu65ms

opencv341可以直接应用ssd_mobilenet(github)前向工程,算法在voc0712上的Map为0.727,有一定的应用价值!网上一般公开的是opencv341+python版本,很难找到c++版本,所以博主开源(github)一下,以供交流之用!注意:工程已上传至github,...

2018-06-02 15:34:21

阅读数:710

评论数:0

mtcnn-light自适应图像尺寸

一、前言大家好,很久没有更新博客了,此次更新是为了纪念第一次在github上添加的一个实用工程。二、问题陈述使用过mtcnn-light的朋友都知道,在初始化时我们需要设置图像的宽高,才能满足图像金字塔的特性。但如果某些应用场景的输入图像尺寸大小可变,这就要求我们每次都要将三个网络重新初始化,再将...

2018-04-20 00:15:33

阅读数:1180

评论数:0

SaCNN人群密度估计测试

现实问题:随着社会的发展,城市人口的扩增,导致城市特定场所人口聚集度越来越大,不安全因素随之扩大。有效地估计特定场所的人口密度以及计算当前场景的人口数量对道道路安全和交通管理来说显得尤为重要。 解决来源(之一):WACV'18 paper - Crowd counting via scale-a...

2018-03-18 16:17:17

阅读数:1025

评论数:1

图像标签制作工具之labelImg-windows的安装与使用

较众多制作标签的工具,发现labelImg很符合要求,界面很友好,操作很简单,适合做数据标签!

2017-09-13 15:34:13

阅读数:7428

评论数:0

LeeNet分类网络(ImageNet100:top1-73.44%,top5-91.40%,CPU_forward-30ms,model_size-2.7M)

分类网络应用广泛,亦可作为预训练模型用于检测网络,有很好的科研和商业价值。一般的分类网络基于多种数据集做了一个综合的测评,但是因工程条件限制,很难将所有数据集下载并测试,所以博主整理了imagenet100数据集,是从imagenet1000中扣取出来的100类,每类训练数据1000张,测试数据3...

2017-08-31 16:41:03

阅读数:1574

评论数:1

YOLO如何训练分类网络???

一般YOLO的工程应用直接上检测,源自作者提供了分类的预训练模型,但是如果自己改网络训练怎么办?预训练网络没有怎么办?熬到开!!! 不怕,两种方法可以解决! 第一种:比较笨的方法,就是下载imagenet数据训练分类网络! 第二种:一层一层的改网路,每改一层,在原有预训练的条件下训练网络,生成新的...

2017-08-18 15:59:00

阅读数:2935

评论数:1

c++入侵警报之消息机制

工程项目中,某些项目可能需要入侵警报(输出警报声音),并且弹出消息框,待关闭消息框时,警报停止! 要求:警报和输出消息框不影响正常的程序运行,意思就是警报和弹出消息框时,程序继续往下执行! 问题解决方案:同时开辟两个线程,即可不影响程序的正常执行!

2017-08-18 13:35:14

阅读数:590

评论数:0

原始caffe添加CenterLoss_layer

CenterLoss_layer可以在原分类的基础上(某种程度上)可提升几个点左右(博主测试提升6个点),还不占前向时间,好东西啊! 原理这里不介绍了,网上应有尽有!这里只是介绍如何在caffe中如何添加CenterLoss_layer这样的新层!

2017-08-03 17:57:46

阅读数:2032

评论数:0

Caffe源码解析7:Pooling_Layer

转自楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ Pooling 层一般在网络中是跟在Conv卷积层之后,做采样操作,其实是为了进一步缩小feature map,同时也能增大神经元的视野。在Caffe中,poolin...

2017-07-17 12:06:56

阅读数:383

评论数:0

Caffe源码解析6:Neuron_Layer

转自楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ NeuronLayer,顾名思义这里就是神经元,激活函数的相应层。我们知道在blob进入激活函数之前和之后他的size是不会变的,而且激活值也就是输出 yy 只依赖于...

2017-07-17 12:05:51

阅读数:275

评论数:0

Caffe源码解析5:Conv_Layer

转自楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ Vision_layer里面主要是包括了一些关于一些视觉上的操作,比如卷积、反卷积、池化等等。这里的类跟data layer一样好很多种继承关系。主要包括了这几个类,...

2017-07-16 00:20:47

阅读数:659

评论数:0

Caffe源码解析4: Data_layer

转自楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ data_layer应该是网络的最底层,主要是将数据送给blob进入到net中,在data_layer中存在多个跟data_layer相关的类 BaseDataLa...

2017-07-16 00:19:56

阅读数:366

评论数:0

Caffe源码解析3:Layer

转自楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ layer这个类可以说是里面最终的一个基本类了,深度网络呢就是一层一层的layer,相互之间通过blob传输数据连接起来。首先layer必须要实现一个forward ...

2017-07-16 00:18:04

阅读数:480

评论数:0

Caffe源码解析2:SycedMem

转自楼燚(yì)航的blog,http://www.cnblogs.com/louyihang loves baiyan/ 看到SyncedMem就知道,这是在做内存同步的操作。这类个类的代码比较少,但是作用是非常明显的。文件对应着syncedmem.hpp,着syncedmem.cpp ...

2017-07-16 00:17:00

阅读数:378

评论数:0

Caffe源码解析1:Blob

转自楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 首先看到的是Blob这个类,Blob是作为Caffe中数据流通的一个基本类,网络各层之间的数据是通过Blob来传递的。这里整个代码是非常规范的,基本上条件编译,命名空间...

2017-07-16 00:14:59

阅读数:524

评论数:1

视频ROI多边形区域生成

由于视频场景检测或者跟踪,要求设置针对特定场景进行操作,博主写了一个简单的设置roi多边形区域的c程序,代码仅供参考! 测试软件:vs2013,opencv249 操作说明:1、执行后待视频播放到想执行roi时按下键盘任意键即可绘制roi区域 2、按顺序鼠标...

2017-07-13 11:44:51

阅读数:511

评论数:0

模板类:函数实现(.cpp)和函数声明(.h)分开的问题

关于模板类:函数实现(.cpp)和函数声明(.h)分开的问题已经是个老问题了,一般不能分开编写,否则编译出错,原因不多说。 但是caffe编写的声明和实现分开了,而且还不冲突,原因就是使用了类模板实例化了。

2017-07-05 17:34:21

阅读数:957

评论数:0

OpenCl_CPU加速矩阵运算

本博文用的是intel的opencl架构,下载链接https://software.intel.com/en-us/intel-opencl/download,默认安装即可 注意:安装完毕后opencl的sdk在路径C:\Program Files (x86)\Intel\OpenCL SDK\6...

2017-06-23 17:53:00

阅读数:678

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭