排序:
默认
按更新时间
按访问量

SaCNN人群密度估计之训练和测试(添加windows-c++测试代码)

现实问题:随着社会的发展,城市人口的扩增,导致城市特定场所人口聚集度越来越大,不安全因素随之扩大。有效地估计特定场所的人口密度以及计算当前场景的人口数量对道道路安全和交通管理来说显得尤为重要。需要解决:所以人群密度估计是急需解决的问题,商业价值隐含其中!解决来源(之一):WACV'18 paper...

2018-03-18 16:17:17

阅读数:481

评论数:0

MTCNN算法提速(ARM测试结果评估)(持续更新中。。。)

mtcnn算法工程应用的系列博客博主已经介绍了一部分了,可参考下列博客:人脸检测之MTCNN训练自己的数据(仅供参考,部分代码尚未公开!)mtcnn-light模型转换程序及mtcnn用于行人检测效果展示MTCNN的windows-cpu配置注意:mtcnn不光可以检测人脸,只要是接近正方形的物体...

2017-11-02 10:48:05

阅读数:5717

评论数:26

基于mtcnn的国内国外车牌定位与矫正(CPU-10ms)

一、背景介绍传统算法车牌定位基本采用颜色空间变换或水平垂直投影,针对国内车牌定位效果很好,因为国内车牌背景颜色基本固定,复杂度较低,容易进行车牌定位。而针对国外例如菲律宾等国的车牌(如下图)背景复杂度明显提高,用传统算法进行车牌定位准确率较低。二、问题提出基于深度学习的车牌定位准确率较高,但是耗时...

2018-04-28 01:34:26

阅读数:224

评论数:0

mtcnn-light自适应图像尺寸

一、前言大家好,很久没有更新博客了,此次更新是为了纪念第一次在github上添加的一个实用工程。二、问题陈述使用过mtcnn-light的朋友都知道,在初始化时我们需要设置图像的宽高,才能满足图像金字塔的特性。但如果某些应用场景的输入图像尺寸大小可变,这就要求我们每次都要将三个网络重新初始化,再将...

2018-04-20 00:15:33

阅读数:319

评论数:0

mtcnn-light模型转换程序及mtcnn用于行人检测效果展示

MTCNN-light(github)想必做人脸检测的伙伴都用过,特别是嵌入式应用的伙伴,那么其中的模型是怎么转换为txt的呢?博主写了简单的python程序,因为怕麻烦,所以写了三个程序,不要见怪!为啥要写呢?已经有了转换之后的模型,为啥非要写出来呢?因为可以训练自己的数据啊,包括非人脸目标的检...

2017-10-19 21:06:37

阅读数:2553

评论数:3

图像标签制作工具之labelImg-windows的安装与使用

较众多制作标签的工具,发现labelImg很符合要求,界面很友好,操作很简单,适合做数据标签!

2017-09-13 15:34:13

阅读数:2804

评论数:0

LeeNet分类网络(ImageNet100:top1-73.44%,top5-91.40%,CPU_forward-30ms,model_size-2.7M)

分类网络应用广泛,亦可作为预训练模型用于检测网络,有很好的科研和商业价值。一般的分类网络基于多种数据集做了一个综合的测评,但是因工程条件限制,很难将所有数据集下载并测试,所以博主整理了imagenet100数据集,是从imagenet1000中扣取出来的100类,每类训练数据1000张,测试数据3...

2017-08-31 16:41:03

阅读数:1140

评论数:1

YOLO如何训练分类网络???

一般YOLO的工程应用直接上检测,源自作者提供了分类的预训练模型,但是如果自己改网络训练怎么办?预训练网络没有怎么办?熬到开!!! 不怕,两种方法可以解决! 第一种:比较笨的方法,就是下载imagenet数据训练分类网络! 第二种:一层一层的改网路,每改一层,在原有预训练的条件下训练网络,生成新的...

2017-08-18 15:59:00

阅读数:1985

评论数:1

c++入侵警报之消息机制

工程项目中,某些项目可能需要入侵警报(输出警报声音),并且弹出消息框,待关闭消息框时,警报停止! 要求:警报和输出消息框不影响正常的程序运行,意思就是警报和弹出消息框时,程序继续往下执行! 问题解决方案:同时开辟两个线程,即可不影响程序的正常执行!

2017-08-18 13:35:14

阅读数:468

评论数:0

原始caffe添加CenterLoss_layer

CenterLoss_layer可以在原分类的基础上(某种程度上)可提升几个点左右(博主测试提升6个点),还不占前向时间,好东西啊! 原理这里不介绍了,网上应有尽有!这里只是介绍如何在caffe中如何添加CenterLoss_layer这样的新层!

2017-08-03 17:57:46

阅读数:1546

评论数:0

SSD-ResNet15_CUT提速之CPU检测95ms/1frame

从原理的角度或是从应用的角度来讲,SSD比YOLO稍微稳一点,SSD检测框架没有严重的抖动!所以加速了YOLO过后,又来折腾一下SSD的提速!

2017-07-27 15:53:19

阅读数:2553

评论数:4

Caffe源码解析7:Pooling_Layer

转自楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ Pooling 层一般在网络中是跟在Conv卷积层之后,做采样操作,其实是为了进一步缩小feature map,同时也能增大神经元的视野。在Caffe中,poolin...

2017-07-17 12:06:56

阅读数:345

评论数:0

Caffe源码解析6:Neuron_Layer

转自楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ NeuronLayer,顾名思义这里就是神经元,激活函数的相应层。我们知道在blob进入激活函数之前和之后他的size是不会变的,而且激活值也就是输出 yy 只依赖于...

2017-07-17 12:05:51

阅读数:253

评论数:0

Caffe源码解析5:Conv_Layer

转自楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ Vision_layer里面主要是包括了一些关于一些视觉上的操作,比如卷积、反卷积、池化等等。这里的类跟data layer一样好很多种继承关系。主要包括了这几个类,...

2017-07-16 00:20:47

阅读数:625

评论数:0

Caffe源码解析4: Data_layer

转自楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ data_layer应该是网络的最底层,主要是将数据送给blob进入到net中,在data_layer中存在多个跟data_layer相关的类 BaseDataLa...

2017-07-16 00:19:56

阅读数:336

评论数:0

Caffe源码解析3:Layer

转自楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ layer这个类可以说是里面最终的一个基本类了,深度网络呢就是一层一层的layer,相互之间通过blob传输数据连接起来。首先layer必须要实现一个forward ...

2017-07-16 00:18:04

阅读数:433

评论数:0

Caffe源码解析2:SycedMem

转自楼燚(yì)航的blog,http://www.cnblogs.com/louyihang loves baiyan/ 看到SyncedMem就知道,这是在做内存同步的操作。这类个类的代码比较少,但是作用是非常明显的。文件对应着syncedmem.hpp,着syncedmem.cpp ...

2017-07-16 00:17:00

阅读数:357

评论数:0

Caffe源码解析1:Blob

转自楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 首先看到的是Blob这个类,Blob是作为Caffe中数据流通的一个基本类,网络各层之间的数据是通过Blob来传递的。这里整个代码是非常规范的,基本上条件编译,命名空间...

2017-07-16 00:14:59

阅读数:465

评论数:0

基于深度学习的行人入侵检测

行人入侵检测项目适用于公安等管理部门针对场景进行行人监控,项目作用点比较广泛! 博主近些天用c写了一个基于深度学习的行人入侵检测工程,可通用摄像头视角。

2017-07-15 15:45:56

阅读数:1239

评论数:0

基于深度学习的密集人群密度检测

密集人群密度检测项目近年来成为研究热门,此项目适用于公安或者保障部门针对特定场景进行人流量控制,项目作用点比较广泛! 博主近些天写了一个基于深度学习的密度检测工程,可通用摄像头视角。

2017-07-15 14:34:40

阅读数:1905

评论数:1

提示
确定要删除当前文章?
取消 删除
关闭
关闭