细胞神经网络(CNNs)的应用与实现
1. 细胞神经网络简介
细胞神经网络(CNNs)是一种非线性电路,最初由Leon O. Chua和Lin Yang在1988年提出。CNNs因其强大的处理能力和广泛应用而迅速成为电路与系统领域的研究热点。CNNs不仅在电子电路中得到应用,还在机器人学、系统理论、物理学、神经生理学、生物学、信息处理等领域展现出巨大的潜力。
CNNs的基本单元是细胞,每个细胞与其邻居相连,形成一个二维或三维的网络。细胞之间的连接权重决定了网络的动态行为。CNNs的独特之处在于其局部连接和空间递归特性,这使得它们能够模拟复杂的非线性现象。
1.1 细胞神经网络的结构
细胞神经网络由多个细胞组成,每个细胞都有自己的状态变量和输入输出。细胞之间的连接权重可以通过模板(templates)来定义,模板决定了细胞之间的相互作用方式。CNNs的结构可以是矩形、六边形、环形等多种形式,具体取决于应用场景的需求。
1.1.1 细胞的内部结构
每个细胞的核心电路可以是任意的动力系统。细胞的动态行为由一个演化方程定义。对于连续时间电路,动态行为由状态方程描述;对于离散时间电路,动态行为由状态更新律描述。
1.2 细胞神经网络的动态行为
细胞神经网络的动态行为由四个关键要素决定:
- 细胞动态 :细胞内部电路的核心可以是任意的动力系统,动态行为由演化方程定义。
- 突触定律 :定义了细胞之间的耦合方式,包括线性反馈和非线性耦合。
订阅专栏 解锁全文
257

被折叠的 条评论
为什么被折叠?



