HDU - 1722 Cake
题目描述:
一次生日Party可能有p人或者q人参加,现准备有一个大蛋糕.问最少要将蛋糕切成多少块(每块大小不一定相等),才能使p人或者q人出席的任何一种情况,都能平均将蛋糕分食.
Input:
每行有两个数p和q.
Output:
输出最少要将蛋糕切成多少块.
Sample Input:
2 3
Sample Output:
4
Hint:
将蛋糕切成大小分别为1/3,1/3,1/6,1/6的四块即满足要求.
当2个人来时,每人可以吃1/3+1/6=1/2 , 1/2块。
当3个人来时,每人可以吃1/6+1/6=1/3 , 1/3, 1/3块。
题目分析:
首先我们把这个蛋糕看成是一个单位圆:
很明显,其中有条黄色线和蓝色线重合了,这样圆就被分割成了4个部分,因为2和3的最大公约数是1,所以在割蛋糕的时候会有一刀相重合,这样相当于蛋糕被切了四刀,即被分成了4块。
所以核心公式为:n = a + b - GCD(a,b),GCD是求最大公约数,即重合的。
http://blog.csdn.net/tigerisland45/article/details/51151529 该链接中有求最大公约数的三种方法,方便读者学习
以下是AC代码:
#include<iostream>
using namespace std;
int gcd(int a , int b) //递归法:欧几里得算法,计算最大公约数
{
return a==0?b:gcd(b%a,a);
}
int main()
{
int x,y;
while(cin>>x>>y)
{
int n = x + y - gcd(x,y);
cout<<n<<endl;
}
}