Cake
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2544 Accepted Submission(s): 1317
Problem Description
一次生日Party可能有p人或者q人参加,现准备有一个大蛋糕.问最少要将蛋糕切成多少块(每块大小不一定相等),才能使p人或者q人出席的任何一种情况,都能平均将蛋糕分食.
Input
每行有两个数p和q.
Output
输出最少要将蛋糕切成多少块.
Sample Input
2 3
Sample Output
4
Hint
将蛋糕切成大小分别为1/3,1/3,1/6,1/6的四块即满足要求.
当2个人来时,每人可以吃1/3+1/6=1/2 , 1/2块。
当3个人来时,每人可以吃1/6+1/6=1/3 , 1/3, 1/3块。
先上代码(做题的思路是参考了网上的),后附本人自己的解析
#include <iostream>
using namespace std;
int max(int x,int y)
{
return x == 0 ? y : max(y%x , x);//①
}
int main()
{
int x,y,s;
while (cin>>x>>y)
{
s= x + y - max(x,y);
cout<<s<<endl;
}
return 0;
}
①这个是代码的精华,它是什么意思呢?
int max(int x,int y)
{
return x == 0 ? y : max(y%x , x);
}
它求出的是什么呢?
这个函数求出来的是它们的最大公约数。
函数用到了什么数学方法呢?
辗转相除法。
举个例子吧。例如求10和8的最大公约数。首先 10 / 8 = 1 … 2;因为余数不为0,所以继续取余数,此时被除数变为8(上式子的除数),除数变为2(上个式子的余数),8 / 2 = 4 … 0,因为余数为0,所以得出10和8的最大公约数为2(余数为0的式子的除数)。
35和25--->35%25=10---25%10=5---10%5=0--->最大公约数为5.
x == 0 ?是判断x是否为0。如果为真,那么函数返回此时的y值,也就是最后的答案。如果为假,那么就返回max(y%x,x)的值,继续调用max函数,直到x == 0 时停止调用,并返回结果。
如果解析有错,欢迎大家前来留言指正。