第一章:建立数学模型
1. 常见模型:是为了一定目的,对客观事物的一部分进行简缩、抽象,提炼出来的原型的替代物。其集中反映了原型中人们需要的那一部分特征。
实物模型:玩具、照片、飞机、火箭;
物理模型:水箱中的舰艇、风洞中的飞机;
符号模型:地图、电路图、分子结构图。
2. 建立数学模型的基本步骤:以航海为例
a) 做出简化假设:船速、水速为常数;
b) 模型构成:用符号表示有关量:x,y表示船速和水速;
发挥想象力、使用类比法,机娘采用简单的数学工具。
c) 用物理定律列出数学式子:二元一次方程;(可能伴随模型的参数估计)
有时模型有未知参数,这时需要使用各种数学方法、数学软件和计算机技术进行模型求解;
之后还要进行模型分析:如误差分析、模型对数据的稳定性分析等;
模型检验:与实际现象、数据比较,检验模型的合理性。
d) 求解得到数学解答;
e) 回答原问题:船速每小时20千米。
3. 数学模型与数学建模
数学模型:对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。
数学建模:建立数学模型的全过程。(包括表述、求解、解释、检验等)
4. 数学建模的具体应用
a) 分析与设计:椅子在不平的地面上能放稳吗?
b) 预报与决策:如何预报人口的增长?使用现成模型、确定模型参数、模型检验、模型应用(即进行人口预报)。
c) 控制与优化
d) 规划与管理:商人们怎样安全过河?
5. 数学建模的基本方法:
机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律;
测试分析:将研究对象看做“黑箱”,通过对测量数据的统计分析,找出与数据拟合最好的模型。
一般情况下,需要进行机理分析建模,并通过测试分析确定模型参数。
第二章:初等模型(初等数学方法建模)
1. 席位分配:
a) 问题描述:三个系学生共200名(甲系100、乙系60,丙系40)。代表会议共20席,按比例分配,三个系分别为10,6,4席。
b) 问题存在:现因学生转系,三系人数分别变为:103,63,34.问20个席位如何分配?才能使得尽量“公平”。
c) 解决方法:提出不同的假设,进行不同方法的讨论,对不同方法进行对比分析(满足哪些公平条件),得出结论。
2. 双层玻璃窗的功效:
a) 问题描述:双层玻璃窗与同样多材料的单层玻璃窗相比,减少多少热量损失?
b) 问题假设:热量传播只有传单,没有对流;T1,T2不变,热传导过程处于稳态;材料均匀,热传导过程处于稳态。
c) 建模:热传导定律模型。(有公式)
d) 分析:属于“测试分析“类型,建模分析,计算得结果,下结论。
e) 延伸:考虑实际情况,进一步分析下结论会更好。
3. 划艇比赛的成绩:
a) 问题描述:对四种赛艇(单人、双人、四人、八人)4次国际大赛冠军的成绩进行比较,发现与桨手数有某种关系。试建立数学模型揭示这种关系。
b) 属于统计,数学模型拟合类型;
c) 问题分析:赛艇速度与桨手数量之间的关系:前进阻力与前进动力等
d) 问题建模:作出假设,运用合适物理定律建立模型;
e) 模型检验:最重要的一部分!即通过实际数据,使用最小二乘法进行模型检验!
4. 录像机计数器的用途:机理分析
a) 问题描述:经试验,一盘录像带从头走到尾,时间用了183分30秒,计数器读数从0000变到6152.
问在一次使用中录像带已经转过大半,计数器读数为4580,问剩下的一段还能否录下一小时的节目?
b) 要求:不仅回答问题,而且建模计数器读数与录像带转过时间的关系;
c) 思考:计数器读数是均匀增长的吗?
d) 问题分析:通过实际观察录像机计数器的工作原理,发现问题实质;之后进行模型假设,与已有物理知识,进行建模,确定参数,之后进行实际模型检验!
5. 实物交换:
a) 问题描述:甲有物品X,乙有物品Y,双方为满足更高的需要,商定相互交换一部分。研究实物交换方案。
b) 根据实际情况建立二维模型:(x,y)表示;
c) 根据不同假设,进行不同建模处理。
6. 传送带的效率:物理实际模型
a) 问题描述:工人将生产出的产品挂在经过他上方的空钩运走,若工作台数量固定,挂钩数量越多,传送带运走的产品越多,在产品进入稳态后,给出衡量传送带效率的指标,研究提高传送带效率的途径。
b) 问题分析:进行假设,之后因为衡量指标需要自选,所以需要根据实际情况做决定,确定指标。
c) 模型建立,提出提高效率的途径。
7. 起帆远航:
a) 问题描述:帆船在海面上乘风远航,确定最佳的航行方向及帆的朝向。
b) 简化问题:海面上东风劲吹,设帆船要从A点驶向正东方的B电,确定起航时的航向,以及帆的朝向。
c) 问题分析:完全根据实际情况进行受理分析,进行模型建立,并求解。
总结:
1. 席位分析:进行不同假设,得出不同模型,进行对比分析;
2. 双层玻璃窗的功效:合理假设,根据已有物理知识,进行模型建立,分析不同情况,下结论;
3. 划艇比赛的成绩:合理假设,根据已有物理知识,进行模型假设,再实际数据可测量的情况下!进行模型检验!最后下结论;
4. 录像机计数器的用途:“机理分析”实物真实物理情况!之后进行假设,模型建立,参数估计(经常使用最小二乘估计),最后进行模型检验,之后下结论。
5. 实物交换:二维建模,不同假设,不同原则,不同处理方式。
6. 传送带的效率:根据实际情况,与已有知识,进行合理假设,建模分析,此题重在提出“提高效率”的途径!
7. 起帆远航:根据实际情况,进行受理分析,在一定合理假设的前提下,进行模型建立并求解。
以上列举了一些基本的模型建立的方式,当然实际比赛中的题目不会如此简单,但通过其还是能稍微体会建模的实际意义与内涵。
第四章:静态优化模型(微分法建模,求导得目标函数最优解)
现实世界中普遍存在着优化问题;静态优化模型指求解问题的最优解;重点是如何根据目的确定恰当的目标函数;一般使用微分法。
1. 存储模型:存在某种矛盾,寻找平衡最优点!
a) 问题描述:配件厂为装配生产若干中产品,轮换产品时因更换设备要付生产准备费,产量大于需求时因积压资金要付存储费,该场生产能力非常大,即所需数量可在很短时间内产出。
b) 问题存在:今已知某产品的日需求量为100件,生产准备费5000元,存储费为每日每件1元。试安排该产品的生产计划,即多少天生产一次(生产周期)?每次产量多少,使总费用最少。
c) 要求:不止回答问题,而且要建立生产周期、产量与需求量、准备飞、存储费之间的关系!
d) 问题分析:
首先,对于我们来说,应该先找到问题所在,即造成当前无法做决定的原因是什么?
这道题的原因为:
周期短,产量小:存储费少,但准备费多。
周期长,产量大:准备飞少,但存储费多。
e) 分析求解:
i. 模型假设
ii. 目标函数:每天费用的平均值最小
iii. 模型建立:离散问题连续化
iv. 模型求解:得出目标函数,求解当周期T为多少时,可以获得最优解,可以使用matlab等软件进行求解!
v. 模型分析:说出T的变化讲引起目标函数如何进行变化!
f) 进一步建模:如允许缺货时又需要怎样进行建模?
2. 森林救火
a) 问题描述:森林失火后,要确定派出消防队员的数量
b) 矛盾:
i. 队员多,森林损失小,但救援费用大;
ii. 队员少,森林损失大,但球员费用小。
综合考虑损失费和救援费,确定队员数量。
c) 问题分析:
i. 合理假设:火的蔓延方式等;
ii. 模型建立了,列出总费用的函数模型;
iii. 利用数学软件进行模型求解;
iv. 进行解释。
与存储模型十分像,都是求解存在某种矛盾情况下的最优解。
3. 最优价格
a) 问题描述:根据产品成本和市场需求,在产销平衡条件下确定商品价格,使利润最大。
b) 问题假设:产量等于销量:x;收入与销量成正比;销量依于价格p是减函数;等
c) 建模与求解
d) 如果进一步分析,可以少一些之前的假设,进行另外的一些分析建模。
4. 消费者均衡:
a) 问题描述:消费者对甲乙两种产品的偏爱程度用无差别的曲线族表示,问他如何分配一定数量的前,购买这两种商品,以达到最大的满意度?
一样是最优化的问题,不多做解释了,,,
b) 可以进行的优化:考虑如何推广到m(>2)种商品的情况!
5. 冰山运输
a) 问题描述:某地区缺水,淡化海水的成本为每立方米0.1英镑;专家建议从9600千米远德南极用拖船运送冰山,取代淡化海水,试从经济的角度研究冰山运输的可行性。
b) 建模准备:加入进行运输,则需要的一系列的成本计算,最终建模求得成本表达式。
c) 之后进行建模分析。
d) 结论分析:只有当计算出的成本显著低于淡化海水的成文时,才考虑其可行性!
重点在于建模时,要充分考虑不可忽略的种种因素:如冰山融化、燃料、租凭费用等。
总结:
1. 存储问题:存在某种实际矛盾,不知如何安排。需要寻找平衡最优点!
2. 森林救火:与存储问题一样,都是解决某种存在矛盾。
3. 最优价格:一样,求解最优问题,重在前提假设要合理。
4. 消费者均衡:考虑推广优化。
5. 冰山运输:考虑不可忽略的多种因素损失。
第五章:动态模型(微分方程建模)
· 预报与决策类型
· 描述对象特征随时间或空间的演变过程;
· 分析对象特征的变化规律;
· 预报对象特征的未来特征;
· 研究控制对象特征的手段等。
这类题,要求的是一种趋势,描述一种变化过程,也可以称为预测。(属于动态)
1. 传染病模型
a) 问题描述:描述产染病的传播过程;分析受感染人数的变化规律;预报传染病高潮到来的时刻;预防传染病蔓延的手段;按照传播过程的一般规律,用机理分析方法建立模型;之后使用测试分析,确定最好的模型。
b) 问题模型:
这种类型题目,需要依据不同的假设,来建立不同的模型(一般要多个),之后再通过测试分析,确定建模的可靠性。
c) 最好可以在最后进行一次全部综合的区别,分析。
2. 经济增长模型
a) 通过增加生产、发展经济、增加投资、增加劳动力、提高技术
· 建立产值与资金劳动力之间的关系;
· 研究资金与拉动力的最佳分配(静态);
· 调节资金与劳动力的增长率,使经济(生产率)增长。
b) 使用现成的道格拉斯生产函数;
c) 资金与拉动力的最佳分配(静态);
d) 经济(生产率)增长的条件(动态模型)。
3. Lanchester战争模型
a) 问题描述:第一次世界大战时提出的预测战争结果的数学模型;分为不同的三种战争类型。
b) 问题假设:
i. 只考虑双方兵力多少和战斗力强弱;
ii. 兵力因战斗减员,因增援而增加;
iii. 战斗力与射击次数、命中率等相关;
c) 建立一般模型;
d) 建立不同三种战争类型的模型(一般要建模,作图进行分析比较)。
4. 药物在体内的分布与排除
a) 问题描述:药物进入人体形成血药浓度?
b) 问题要求:
i. 血药浓度需保持在一定范围内:给出药物方案射击;
ii. 研究药物在体内吸收、分布和排出的过程:药物动力学;
iii. 建立房室模型:药物动力学的基本步骤;
iv. 本节讨论二室模型:中心室(心、肺、肾等)和周边室(四肢、肌肉等)。
c) 模型假设:中心室和周边室溶剂不变;药物转移顺序;药物转移速率及排出体外速率,与该室血药浓度成正比等。(必须是合理假设!)
d) 模型建立:线性常系数非齐次方程。
e) 模型求解:
i. 假定不同的初始条件;
ii. 在不同的条件下进行参数估计;
5. 香烟过滤嘴模型:
a) 问题描述:
i. 过滤嘴的作用与材料、长度的关系;
ii. 建立吸烟过程的数学模型;
iii. 分析吸入的毒物量与哪些因素有关,定量关系如何?
b) 模型分析:
i. 分析吸烟时毒物进入人体的过程;
ii. 设想一个机器人,在典型环境下吸烟,其方式和外部环境不变。
c) 模型假设:
i. l1:烟草长 l2:过滤嘴长 l = l1 + l2;
毒物M均匀分布,密度w0 = M / l1
ii. 点燃处毒物随延误进入空气和延香烟穿行的数量比是 a’:a,a’ + a = 1
iii. 未点燃的烟草和过滤嘴对随烟雾穿行的毒物的吸收率分别为b和B;
iv. 延误沿香烟穿行速度是常数v,香烟燃烧速度是常数u。 v>>u
d) 定性分析:大致的一种变化趋势,导致吸入人体毒物总量的变化趋势分析
e) 模型建立(结合画图):
t=0,x=0,点燃香烟; q(x,t):毒物流量;w(x,t):毒物密度;w(x,0) = w0
Q = q(l,t)dt, T = l1/u (0<=t<=T)
f) 进行求解,得出Q。
g) 分析的话,可以从加过滤嘴与不加过滤嘴两种情况Q的的多少来进行分析。
h) 之后依据不同的假设变量情况,得出结论。
6. 烟雾的扩散与消失
a) 问题描述:炮弹在空中爆炸,烟雾向四周扩散,形成圆形不透光区域;
不透光区域不断扩大,然后区域边界逐渐明亮,区域缩小,最后延误消失;
建立了模型描述延误扩散和消散的过程,分析消散时间与各因素的关系。
b) 问题分析:
i. 无穷空间由瞬时点源导致的扩散过程,用二阶偏微分方程描述烟雾浓度的变化;
ii. 观察的烟雾消失与烟雾对光线的吸收,以及仪器对明暗的灵敏程度有关。
c) 模型假设:
i. 烟雾在无穷空间扩散,不受大地和风的影响;扩散服从热传导定律;
ii. 光线传过烟雾时光强的减少与烟雾浓度成正比;无烟雾的大气不影响光强。
iii. 传过烟雾进入仪器的光线只有明暗之分,明暗界限由仪器灵敏度决定。
d) 模型建立:
i. 烟雾浓度C(x,y,z,t)的变化规律:依据热传导定律;
ii. 传过烟雾光强的变化规律;
iii. 仪器灵敏度与烟雾明暗界限;
iv. 不透光区域边界的变化规律(核心)。
等等,需要查询一些资料进行函数方程式的建模分析,初学,先有一个大体概念,对具体先不做考虑,等之后分析。
e) 结果分析
观测到不透光区域边界达到最大时刻t1,可以预报烟雾消失的时刻t2。
总结:
1. 传染病模型:依据不同假设,进行不同情况下的建模分析;
2. 经济增长模型:依据现有的道格拉斯生产函数建模;之后分析一个静态的最佳配比;再建立一个经济增长的动态模型。
3. Lanchester战争:主要是做好假设。
4. 药物在体内的分布与排除:这种类型的题目,一般纯建模是无法进行的,都要参考一定的文献。建立方程之后,根据不同的初始条件,进行不同的参数估计,模型求解。
5. 香烟过滤嘴模型:具体问题,数字化。
6. 烟雾的扩散与消失:对于特定的问题,可以寻求特定的描述方式,有时需要搜索相关书籍资料来帮助建模理解。