并行流与串行流

并行流

并行流就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。
Java 8 中将并行进行了优化,我们可以很容易的对数据进行并行操作。Stream API 可以声明性地通过 parallel() 与sequential() 在并行流与顺序流之间进行切换。

了解 Fork/Join 框架

Fork/Join 框架:就是在必要的情况下,将一个大任务,进行拆分(fork)成若干个
小任务(拆到不可再拆时),再将一个个的小任务运算的结果进行 join 汇总.

Fork/Join 框架与传统线程池的区别

采用 “工作窃取”模式(work-stealing):当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加到线程队列中,然后再从一个随机线程的队列中偷一个并把它放在自己的队列中。
相对于一般的线程池实现,fork/join框架的优势体现在对其中包含的任务的
处理方式上.
在一般的线程池中,如果一个线程正在执行的任务由于某些原因无法继续运行,那么该线程会处于等待状态.
而在fork/join框架实现中,如果某个子问题由于等待另外一个子问题的完成而无法继续运行.那么处理该子问题的线程会主动寻找其他尚未运行的子问题来执行.这种方式减少了线程的等待时间,提高了性能.

public class ForkJoinCalculate extends RecursiveTask<Long> {

    private static final long serialVersionUID = 134656970987L;
    private long start;
    private long end;
    private static final long THRESHOLD = 10000;
    public ForkJoinCalculate(long start,long end){
        this.start = start;
        this.end = end;
    }
    @Override
    protected Long compute() {
        long length = end - start;
        if (length <= THRESHOLD) {
            long sum = 0;
            for (long i = start; i <= end; i++) {
                sum += i;
            }
            return sum;
        }else {
            long middle = (start + end) / 2;
            ForkJoinCalculate left = new ForkJoinCalculate(start,middle);
            left.fork();//拆分子任务,同时压入线程队列
            ForkJoinCalculate right = new ForkJoinCalculate(middle+1,end);
            right.fork();
            return left.join() + right.join();
        }
    }
}
public class ForkJoinTest {
    /**
     * java7 ForkJoin 框架
     */
    @Test
    public void test1(){
        Instant start = Instant.now();

        ForkJoinPool pool = new ForkJoinPool();
        ForkJoinTask<Long> task = new ForkJoinCalculate(0,10000000000L);
        Long sum = pool.invoke(task);
        System.out.println(sum);//500000000500000000

        Instant end = Instant.now();
        System.out.println("耗费时间为:"+ Duration.between(start,end).toMillis());
        //耗费时间为:2885 毫秒
    }
    /**
     * 普通for循环
     * 注意:只有数值足够大的才能看出ForkJoin 框架的优势
     */
    @Test
    public void test2(){
        Instant start = Instant.now();
        long sum = 0L;
        for (long i = 0; i <= 10000000000L; i++) {
            sum += i;
        }
        System.out.println(sum);//5000000050000000
        Instant end = Instant.now();
        System.out.println("耗费时间为:"+ Duration.between(start,end).toMillis());
        //耗费时间为:4465毫秒
    }
    /**
     * java8 并行流
     */
    @Test
    public void test3(){
        Instant start = Instant.now();
        LongStream.rangeClosed(0,10000000000L)
                .parallel()
                .reduce(0,Long::sum);
        Instant end = Instant.now();
        System.out.println("耗费时间为:"+ Duration.between(start,end).toMillis());
        //耗费时间为:1627毫秒
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值