并行流
并行流就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。
Java 8 中将并行进行了优化,我们可以很容易的对数据进行并行操作。Stream API 可以声明性地通过 parallel() 与sequential() 在并行流与顺序流之间进行切换。
了解 Fork/Join 框架
Fork/Join 框架:就是在必要的情况下,将一个大任务,进行拆分(fork)成若干个
小任务(拆到不可再拆时),再将一个个的小任务运算的结果进行 join 汇总.
Fork/Join 框架与传统线程池的区别
采用 “工作窃取”模式(work-stealing):当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加到线程队列中,然后再从一个随机线程的队列中偷一个并把它放在自己的队列中。
相对于一般的线程池实现,fork/join框架的优势体现在对其中包含的任务的
处理方式上.
在一般的线程池中,如果一个线程正在执行的任务由于某些原因无法继续运行,那么该线程会处于等待状态.
而在fork/join框架实现中,如果某个子问题由于等待另外一个子问题的完成而无法继续运行.那么处理该子问题的线程会主动寻找其他尚未运行的子问题来执行.这种方式减少了线程的等待时间,提高了性能.
public class ForkJoinCalculate extends RecursiveTask<Long> {
private static final long serialVersionUID = 134656970987L;
private long start;
private long end;
private static final long THRESHOLD = 10000;
public ForkJoinCalculate(long start,long end){
this.start = start;
this.end = end;
}
@Override
protected Long compute() {
long length = end - start;
if (length <= THRESHOLD) {
long sum = 0;
for (long i = start; i <= end; i++) {
sum += i;
}
return sum;
}else {
long middle = (start + end) / 2;
ForkJoinCalculate left = new ForkJoinCalculate(start,middle);
left.fork();//拆分子任务,同时压入线程队列
ForkJoinCalculate right = new ForkJoinCalculate(middle+1,end);
right.fork();
return left.join() + right.join();
}
}
}
public class ForkJoinTest {
/**
* java7 ForkJoin 框架
*/
@Test
public void test1(){
Instant start = Instant.now();
ForkJoinPool pool = new ForkJoinPool();
ForkJoinTask<Long> task = new ForkJoinCalculate(0,10000000000L);
Long sum = pool.invoke(task);
System.out.println(sum);//500000000500000000
Instant end = Instant.now();
System.out.println("耗费时间为:"+ Duration.between(start,end).toMillis());
//耗费时间为:2885 毫秒
}
/**
* 普通for循环
* 注意:只有数值足够大的才能看出ForkJoin 框架的优势
*/
@Test
public void test2(){
Instant start = Instant.now();
long sum = 0L;
for (long i = 0; i <= 10000000000L; i++) {
sum += i;
}
System.out.println(sum);//5000000050000000
Instant end = Instant.now();
System.out.println("耗费时间为:"+ Duration.between(start,end).toMillis());
//耗费时间为:4465毫秒
}
/**
* java8 并行流
*/
@Test
public void test3(){
Instant start = Instant.now();
LongStream.rangeClosed(0,10000000000L)
.parallel()
.reduce(0,Long::sum);
Instant end = Instant.now();
System.out.println("耗费时间为:"+ Duration.between(start,end).toMillis());
//耗费时间为:1627毫秒
}
}