自媒体利器:阿里通义万象(Wan)(文生视频/图生视频)认知

写在前面


  • 博文内容为 阿里通义万象(Wan) 简单认知
  • 理解不足小伙伴帮忙指正 😃,生活加油

99%的焦虑都来自于虚度时间和没有好好做事,所以唯一的解决办法就是行动起来,认真做完事情,战胜焦虑,战胜那些心里空荡荡的时刻,而不是选择逃避。不要站在原地想象困难,行动永远是改变现状的最佳方式

持续分享技术干货,感兴趣小伙伴可以关注下 _


Wan2.1 开源视频生成模型:让每个人都能轻松创作专业级视频

简单介绍

Wan2.1 是首个真正"亲民"的视频生成开源模型套件,具有以下突破性优势:

  • 性能天花板:在多个评测基准测试中超越所有商业闭源视频模型
  • 平民级硬件支持:1.3B模型仅需8GB显存即可运行,RTX 4090生成5秒480P视频仅需4分钟
  • 全能创作能力:支持文本生成视频、图像扩展视频、视频编辑、文本生成图像等多种功能
  • 多语言支持:全球首款中英双语视频生成模型
  • 黑科技VAE:Wan-VAE视频编解码器可处理任意长度1080P视频,压缩效率提升300%

官网地址: https://wanxai.com/?utm_source=ai-bot.cn

项目地址: https://github.com/Wan-Video

在线体验地址:https://tongyi.aliyun.com/wanxiang/videoCreation

在这里插入图片描述

图生视频

生成视频

在这里插入图片描述

本地部署

Github 上面的部署教程很简单,就两条命了,在 window 上面试了好久没有成功,WSL 试了也不太行,主要问题是FLASH_ATTN 的安装,build 的时候一只卡着,没动静了。issues 上面也有好多其他的坑,所以不太建议没经验的小伙伴尝试,可以直接用在线版本的。之后 issues 解决可以尝试

# 克隆代码库(首次访问可能需要科学上网)
git clone https://github.com/Wan-Video/Wan2.1.git
cd Wan2.1

# 安装依赖环境(建议使用Python 3.12+)
pip install -r requirements.txt

模型下载

模型类型分辨率下载地址(HuggingFace)下载链接(ModelScope)
T2V-14B480P/720PHuggingFaceModelScope
I2V-14B-720P720PHuggingFaceModelScope
T2V-1.3B480PHuggingFaceModelScope

性能实测

下面为 readme 文件中提供的性能测试,有实际需求的小伙伴可以参考

不同硬件生成速度对比

模型GPU型号分辨率生成时长显存峰值
T2V-14BRTX 4090720P120秒16GB
I2V-14BA100×8720P60秒32GB
T2V-1.3BRTX 4080480P4分钟8GB

博文部分内容参考

© 文中涉及参考链接内容版权归原作者所有,如有侵权请告知 😃


https://github.com/Wan-Video


© 2018-至今 liruilonger@gmail.com, 保持署名-非商用-相同方式共享(CC BY-NC-SA 4.0)

<think>好的,我需要帮助用户了解如何在本地部署Hugging Face上的通义万象模型。根据提供的引用内容,首先需要整理出部署的步骤和相关注意事项。用户可能对技术细节不太熟悉,所以需要分步骤说明,确保清晰易懂。 首先,用户需要准备硬件和软件环境。根据引用[1]和[5],硬件要求至少需要NVIDIA显卡,显存不低于10GB,推荐16GB以上,特别是对于14B模型。软件方面需要Python 3.8+、CUDA 11.8和PyTorch 2.0+。这些是基础,必须正确安装才能继续后续步骤。 接下来是克隆代码仓库。引用[1]提到需要克隆官方仓库,用户可能需要使用git命令,例如git clone https://github.com/Wan-AI/Wan2.1.git。这一步需要注意仓库地址是否正确,以及是否有权限访问。 然后是安装依赖项。使用pip安装requirements.txt中的依赖,可能还需要安装huggingface_hub的CLI工具来下载模型,如引用[2]所示。需要提醒用户确保所有依赖正确安装,避免版本冲突。 下载模型部分,引用[2]和[5]都提到了使用huggingface-cli下载模型,用户需要执行相应的命令,例如指定模型名称和本地目录。需要明确说明不同模型版本的选择,如14B和1.3B的区别,以及显存需求的不同。 配置环境变量可能涉及设置CUDA路径和模型路径,引用[1]和[3]提到需要正确配置这些变量,确保模型能够正确加载。用户可能需要编辑.bashrc或其他配置文件,需要给出具体命令示例。 运行模型阶段,需要提供示例代码或命令,如运行inference脚本,并指定参数。引用[3]和[4]提到可能需要调整参数,如视频分辨率和帧数,用户需要根据硬件情况进行调整。 注意事项部分,需要强调硬件兼容性、网络问题、模型版本和显存监控,如引用[1]和[4]所述。特别是对于网络不稳定的用户,可能需要使用代理或镜像源。 最后,成相关问题需要考虑用户可能遇到的后续问题,例如性能优化、与其他工具集成、自定义训练和应用场景,如引用[5]提到的不同模型版本的应用。 总结来说,需要将步骤分解为环境准备、克隆代码、安装依赖、下载模型、配置环境、运行模型和注意事项,每个步骤详细说明,并引用相关的引用来源。同时,使用用户友好的语言,避免过于技术化,确保用户能够逐步跟随操作。</think>### 分步指南:本地部署Hugging Face通义万相模型 #### **一、环境准备** 1. **硬件要求** - **GPU**:需NVIDIA显卡,显存≥10GB(14B模型推荐16GB以上,1.3B模型需≥8GB)[^5] - **内存**:≥32GB - **存储**:至少50GB可用空间(模型文件约15-30GB)[^2][^5] 2. **软件依赖** - **操作系统**:Linux(推荐Ubuntu 20.04+)或Windows WSL2[^1] - **CUDA**:11.8+ - **Python**:3.8+ - **PyTorch**:2.0+ 安装命令示例: ```bash pip install torch==2.0.1+cu118 --extra-index-url https://download.pytorch.org/whl/cu118 ``` --- #### **二、获取代码与模型** 1. **克隆代码仓库** 执行以下命令克隆官方仓库: ```bash git clone https://github.com/Wan-AI/Wan2.1.git cd Wan2.1 ``` 2. **安装依赖** ```bash pip install -r requirements.txt pip install "huggingface_hub[cli]" # 必须安装CLI工具[^2] ``` 3. **下载模型权重** - **14B模型**(高质量视频成): ```bash huggingface-cli download Wan-AI/Wan2.1-T2V-14B --local-dir ./Wan2.1-T2V-14B ``` - **1.3B模型**(低显存需求): ```bash huggingface-cli download Wan-AI/Wan2.1-T2V-1.3B --local-dir ./Wan2.1-T2V-1.3B ``` --- #### **三、配置运行环境** 1. **设置环境变量** 在`.bashrc`或终端中执行: ```bash export PYTHONPATH=$PYTHONPATH:$(pwd) export MODEL_PATH=./Wan2.1-T2V-14B # 根据实际模型路径修改 ``` 2. **验证CUDA可用性** 运行测试脚本: ```python import torch print(torch.cuda.is_available()) # 应输出True ``` --- #### **四、运行模型** 1. **文生视频示例** 创建脚本`infer_t2v.py`: ```python from models import WanT2V model = WanT2V.from_pretrained(MODEL_PATH) prompt = "一只猫在草地上追逐蝴蝶" output = model.generate(prompt, max_frames=24, resolution="480p") output.save("output.mp4") ``` 2. **执行成** ```bash python infer_t2v.py ``` --- #### **五、关键注意事项** 1. **硬件兼容性** - 确认显卡支持FP16计算(如RTX 30/40系列)[^5] - 若显存不足,可尝试降低分辨率(如720p→480p)或减少`max_frames`参数[^3] 2. **网络问题处理** - 若下载模型失败,可添加`--resume-download`参数续传[^2] - 国内用户建议使用阿里云镜像加速: ```bash huggingface-cli download ... --repo-type=model --cache-dir=/cache --local-dir-use-symlinks=False ``` 3. **多模态扩展** 若要使用视频(I2V)功能,需额外下载像编码器权重: ```bash huggingface-cli download Wan-AI/Wan2.1-I2V-14B --local-dir ./I2V-14B ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山河已无恙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值