DeepSeek如何在有限的计算资源下开发高级AI模型

DeepSeek 在有限的计算资源下开发高级 AI 模型,主要通过几个创新方法:

  • 专家混合架构(MoE):仅激活每个 MoE 层中的一部分路由专家,大幅扩展模型容量,同时减少计算成本。
  • 低秩键值联合压缩技术 (MLA):将多头注意力机制中需要缓存的键(Key)和值(Value)矩阵压缩为一个低维潜在向量,显著减少内存占用,实现高效注意力计算。
  • 多 Token 预测 (MTP):一次性预测多个词汇,迫使模型学习 Token 之间的依赖关系,更好地理解上下文信息,提高计算速度并降低内存消耗。
  • 混合精度训练:采用混合精度训练方法,降低 GPU 内存占用和计算开销,同时保持高性能。
  • 并行策略:采用复杂的三层并行策略(流水线并行、专家并行和数据并行),并通过创新的流水线并行算法减少流水线停滞现象,提高 GPU 利用率并减少通信开销。
  • 群体相对策略优化 (GRPO): 提出一种创新的强化学习算法,提升大语言模型的推理能力,跳过费时的人类反馈的强化学习(RLHF)和
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@Rocky

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值