- 博客(45)
- 资源 (1)
- 收藏
- 关注
原创 Agent核心模块实现之:Memory记忆模块
Agent有很多定义,记住这个核心公式就可以,多一个模块少一个模型也可以叫Agent,比如最简单的LLM+Tools就可以组成一个Agent,在拓展一些再加上FeedBack(反馈校验),也是一个Agent。核心公式:AI AgentLLM(大模型) + Planning(规划) + Memory(记忆) + Tools(工具)感觉记忆(Sensory Memory)持续时间:极短,大约0.25秒到4秒内容:感官接收到的原始信息,如视觉、听觉、触觉等亚类:图像记忆(视觉)、声像记忆(听觉)
2025-05-23 15:45:04
1002
原创 ## 第一篇:DeepSeek概述——从背景到愿景
本篇博客作为DeepSeek技术系列博客的第一篇,主要介绍了DeepSeek公司的背景、技术路线和核心产品。在接下来的系列文章中,我们将深入探讨DeepSeek的技术细节,包括其模型架构、训练方法、行业应用案例以及开发者指南等丰富内容。欢迎您持续关注,与我们共同探索DeepSeek的技术魅力和应用前景。
2025-04-16 20:38:37
90
原创 DeepSeek技术深度解析:从基础架构到应用实践
DeepSeek是由杭州深度求索人工智能基础技术研究公司开发的一系列大型语言模型和AI助手。自2024年首次发布以来,DeepSeek已发展成为全球开源LLM领域的重要参与者,其模型性能和创新技术架构获得了广泛认可。DeepSeek-V3:开源通用型大模型,对标GPT-4o总参数量:6710亿(671B)每个token激活参数:370亿(37B)预训练数据量:14.8T tokens采用MoE(混合专家)架构。
2025-04-16 19:31:09
346
原创 # DeepSeek技术深度解析:从基础架构到应用实践
近年来,人工智能领域经历了飞速发展,各种大型语言模型(Large Language Model, LLM)层出不穷。在众多AI模型中,DeepSeek以其开源、低成本、高性能的特点脱颖而出,成为了中国AI领域的"国产之光"。本篇文章将深入探讨DeepSeek的技术背景、架构设计、训练框架以及应用场景,帮助开发者全面了解这一创新型AI模型。DeepSeek是由中国初创公司深度求索(DeepSeek)开发的一系列开源AI模型,成立于2023年,专注于研究世界领先的通用人工智能底层模型与技术。
2025-04-16 15:03:06
85
原创 DeepSeek: 开源AI模型的创新之路
20] 一文读懂| 关于DeepSeek公司及其大模型 - 新浪财经. https://finance.sina.com.cn/stock/usstock/c/2025-01-27/doc-inehmkuy7811061.shtml?finpagefr=p_108.[1] 极致性能背后的算力逻辑:DeepSeek如何重构AI研发的底层叙事. http://www.news.cn/tech/20250213/ffa943332636461aaa76810c9d717c32/c.html.
2025-04-16 14:52:34
482
原创 # 深入解析DeepSeek:国产AI技术的效率革命与应用前景
DeepSeek是由杭州深度求索人工智能基础技术研究有限公司推出的高性能AI推理模型系列。自2024年1月发布首个DeepSeek LLM以来,DeepSeek不断迭代升级,2025年1月发布的DeepSeek-R1模型更是以560万美元的训练成本实现了媲美OpenAI o1正式版的性能,且全系列模型均采用MIT开源协议,支持自由修改和商用,极大推动了AI技术的普及与创新[3]。DeepSeek代表了国产AI技术的最新高度,其在模型架构、训练算法和推理效率上的创新,为AI行业带来了显著的效率革命。
2025-04-16 14:50:37
73
原创 手把手教你用AutoGLM打造个人AI内容创作助手
AutoGLM是一种基于大语言模型的内容生成工具,它能够通过给定的提示(prompt)生成相应的文本内容。AutoGLM的核心在于其强大的自然语言处理能力,能够理解和生成人类语言,从而实现自动化的内容创作。无论是文章、报告、故事,还是代码、邮件,AutoGLM都能为你提供高效的支持。AutoGLM提供了多种提示模板,你可以根据自己的需求修改这些模板,以生成更符合你要求的内容。# 定义一个新的提示模板。
2025-04-16 14:43:58
1185
原创 # 2025年AI大模型开源趋势:技术普惠与生态重构
AI Agent,即人工智能智能体,是一种能够感知环境、进行决策并执行行动的智能实体。自主性:无需持续人工干预,能够自主运行和决策反应性:能感知环境并实时响应主动性:主动采取行动以达成目标社会性:能与其他系统和人类进行交互协作与传统AI不同,AI Agent不仅能处理特定任务,还能根据目标自主规划行动,调用多种工具完成复杂任务。传统AI更像是一个知识库,而AI Agent则是一个能独立工作的"智能员工"[20。
2025-04-16 14:42:25
969
原创 AI Agent:重新定义人机交互的未来
AI Agent,即人工智能智能体,是一种能够感知环境、进行决策并执行行动的智能实体。自主性:无需持续人工干预,能够自主运行和决策反应性:能感知环境并实时响应主动性:主动采取行动以达成目标社会性:能与其他系统和人类进行交互协作与传统AI不同,AI Agent不仅能处理特定任务,还能根据目标自主规划行动,调用多种工具完成复杂任务。传统AI更像是一个知识库,而AI Agent则是一个能独立工作的"智能员工"[20。
2025-04-16 14:35:04
1218
原创 Rust编程语言全面解析:特性、应用与未来
在当今的编程语言生态系统中,Rust正逐渐成为一颗耀眼的新星。这门由Mozilla主导开发的语言,以其独特的内存安全机制和高性能特点,正在吸引越来越多的开发者和团队的关注。特别是随着Rust 2024版本的稳定发布,这门语言正展现出更加成熟和实用的一面。本文将对Rust进行全面解析,从其历史背景、核心特性、应用场景到生态系统,再到优势与挑战,最后探讨其未来发展趋势,帮助读者全面了解这门备受瞩目的编程语言。
2025-04-07 21:28:49
989
原创 从实验室到主流应用:2025年人工智能技术十大趋势深度解析
2025年初,北京智源人工智能研究院发布了年度"2025十大AI技术趋势"报告,以"无处不在的AI:算法编织的魔幻现实"为主题,预示着AI技术已经从概念走向实用,从专业领域走向主流应用。德勤最新发布的《技术趋势2025》报告也以相似的主题,提示组织在实现AI的全部潜力之前,必须完全协调战略、运营和技术[本文将深入探讨这十大趋势,分析其技术背景、应用场景和未来发展方向,帮助技术开发者和爱好者全面把握2025年AI技术的演进方向。
2025-04-07 21:17:16
1065
原创 2025企业级大模型微调实战:千亿参数模型落地全解析
2025年的大模型微调技术,正在重塑企业智能化转型的底层逻辑。从代码实践到工程部署,从算法创新到业务落地,这既是挑战更是机遇。正如Linux之父Linus Torvalds所说:“技术革命从不会等待犹豫者”,现在正是躬身入局的最佳时机。技术要点深度索引rdmodel4r4dmodel(d_model为隐层维度)OnlogkOnlogk联邦学习收敛速度提升方案:采用FedProx优化器。
2025-04-07 21:13:54
592
原创 大语言模型的安全与隐私风险:全面解析与应对策略
随着大语言模型(LLMs)在各个领域的广泛应用,其安全性和隐私保护问题日益凸显。从ChatGPT到GPT-4、PaLM、LLaMA和DeepSeek等模型,这些技术为我们带来了革命性的体验,但同时也带来了严重的安全风险和隐私隐患。本文旨在全面解析大语言模型面临的安全威胁和隐私风险,分析实际案例,并探讨有效的防御措施和最佳实践,帮助开发者和企业在享受大语言模型带来的便利的同时,也能有效保护数据安全和用户隐私。
2025-04-07 21:08:56
1095
原创 2025年必看!代理式AI技术深度解析:从原理到企业级落地实践
当你的代码能自主分析生产环境中的故障并生成修复方案时,团队效率将提升300%”——这是NVIDIA在CES 2025展示的代理式AI(Agentic AI)应用场景。作为Gartner预测的2025年十大战略技术趋势之首,代理式AI正在重塑软件开发、运维和系统架构设计。本文将结合NVIDIA最新发布的Agentic AI Blueprint框架,从技术架构到企业级应用,手把手教你构建具备自主决策能力的AI代理系统。
2025-04-07 21:00:37
285
原创 Python单元测试:从入门到精通
单元测试是指对软件中的最小可测试单元进行检查和验证。对于Python来说,这些单元通常是函数、方法或类。单元测试的目的是确保每个单元能够正确地执行其功能。pytest是一个功能强大的Python测试框架,它是unittest的替代品。pytest的设计理念是使测试代码更简洁、更易读,同时提供更多的功能和更好的用户体验。
2025-04-07 20:58:50
1089
原创 Python单元测试:从入门到精通
单元测试是软件开发中的一个重要环节,它通过编写测试用例来验证代码的各个模块、函数或类是否按预期工作。单元测试的主要目的是确保代码的正确性、可靠性和可维护性。Python的unittest框架提供了强大的工具来支持单元测试。通过使用单元测试和TDD,可以确保代码的正确性和可靠性,提高代码的可维护性。希望本文能够帮助读者从零开始掌握Python单元测试和TDD开发方法。通过不断实践和探索,相信读者能够编写出高质量的代码和测试用例,从而提高软件的质量和开发效率。
2025-04-07 20:46:44
1053
原创 使用Python调用DeepSeek-R1 API:从入门到精通
强大的推理能力:DeepSeek-R1通过强化学习技术训练,在数学证明、代码生成、决策分析等高难度任务上表现出色思维链输出:模型能够输出推理过程,增强推理透明度,便于用户理解和验证结果多模态处理:支持文本、图像、音频等多种数据类型的处理低成本高效能:相比传统模型,DeepSeek-R1在训练成本上显著降低,但性能却大幅提升特别值得一提的是,DeepSeek-R1-Zero版本甚至可以在不需要任何监督微调数据的情况下,获得强大的推理能力,这在AI领域是一个非常重要的突破。
2025-04-07 20:44:26
963
原创 2025十大AI技术趋势解析:从多模态到具身智能的深度探索
作为深耕人工智能领域的技术博主,我注意到近期北京智源研究院发布的《2025十大AI技术趋势》在开发者社区引发热议。本文将结合最新行业动态与实战案例,带大家深度剖析这些技术趋势背后的技术原理、应用场景及开发实践。
2025-04-07 20:43:37
919
原创 AI编程助手工具横评:从ChatGPT到Codeium的全方位对比
GitHub Copilot是由GitHub、OpenAI和微软Azure团队联合推出的AI编程助手,能够为开发者提供智能代码建议和自动补全功能,适用于多种编程语言和IDE,是目前市场上最受欢迎的AI编程工具之一。深度学习支持:基于OpenAI的Codex模型,Copilot能够根据上下文生成高质量代码建议广泛支持:支持Python、JavaScript、TypeScript、Ruby、Go等多种语言,并能在VS Code、JetBrains等主流IDE中使用。
2025-04-07 20:35:54
895
原创 大语言模型在编程中的应用:工具推荐与实践案例
大语言模型正在深刻改变编程工作方式,提高开发效率,减少重复性劳动。作为程序员,我们应该积极拥抱这些新技术,同时也要保持清醒的认识,了解其局限性。希望本文能为您提供有价值的信息,帮助您更好地利用大语言模型提升编程能力。随着技术的不断发展,大语言模型在编程中的应用将越来越广泛,从代码生成到自动化测试,从文档生成到多语言支持,都将变得更加智能和高效。2025年,我们可以期待看到更多创新的应用场景和工具,如MCP(模型组合编程)的普及和提示工程的重要性提升。
2025-04-07 20:27:40
817
原创 AI编程辅助工具实战指南:GitHub Copilot、Cursor和Trae的深度对比与应用
AI编程辅助工具是将人工智能技术与编程环境相结合的工具,它们能够理解代码的逻辑和结构,提供实时的代码补全、生成、错误修复和优化建议。这些工具极大地提高了开发效率,减少了重复性工作,帮助开发者专注于更有创意和价值的开发任务。
2025-04-07 18:12:05
2055
原创 AI Agent智能体开发实践:从概念到实现
AI Agent,也称为"智能体"或"智能业务助理",是一种在大模型技术驱动下,让人们以自然语言为交互方式高自动化地执行和处理专业或繁复工作任务的智能实体。简而言之,它是构建于大语言模型之上的计算机程序,能够执行更复杂的操作。AI Agent的核心在于通过为大语言模型(LLMs)提供工具(tools)和知识库的访问权限,从而扩展其能力以执行操作(action)的系统。这种系统能够模拟人类的推理过程,自动完成各种任务,从简单的信息检索到复杂的决策制定。
2025-04-07 17:51:34
1365
原创 2025年AI技术十大趋势深度解析:从实验室到主流应用
在数字化转型的浪潮中,2025年的人工智能(AI)技术正经历着前所未有的突破与发展。从大型语言模型到具身智能(Embodied AI),从AI for Science到AI在工业界的落地应用,AI技术已经从实验室走向了千行百业的实践场景。德勤最新发布的《技术趋势2025》报告以"无处不在的AI:算法编织的魔幻现实"为主题,预示着AI技术已经从概念走向实用,从 niche 走向 mainstream。作为AI技术的从业者,我们需要对2025年的AI技术趋势有清晰的认识,把握技术发展的脉搏。
2025-04-03 19:50:13
1552
原创 2025年AI技术趋势深度解析:从实验室到主流应用
2025年是AI技术发展的重要节点,既是总结过去经验的时刻,也是展望未来方向的起点。通过把握AI for Science、具身智能、多模态大模型等技术趋势,选择合适的开发语言(Python或Java),利用云计算和区块链等技术手段,我们可以在AI的魔幻现实中书写属于自己的精彩篇章。作为AI从业者,我们需要保持对新技术的敏感度,持续学习和探索,才能在这场技术变革中把握机遇,应对挑战。未来已来,让我们共同迎接AI技术更加美好的明天。
2025-04-03 19:47:33
899
原创 DeepSeek有哪些相关技术挑战?
为了训练出强大的模型,需要使用海量的训练数据。 这些数据通常来源于网络抓取、书籍、代码等多种渠道。原始数据往往包含大量的噪声、错误和冗余信息,需要进行精细的清洗和过滤,才能保证训练数据的质量。
2025-02-12 21:18:29
279
原创 DeepSeek为什么这么强?
DeepSeek的技术优势并非单一突破,而是在模型架构、数据、算法、工程化等维度形成协同创新体系,这种系统化能力使其在AI竞赛中持续保持领先地位。
2025-02-06 10:46:46
722
原创 数据治理浅析:构建企业数据资产的“交通规则体系”
优秀的数据治理体系不是‘数据警察’,而是‘数据服务商’。当企业能够快速定位可靠数据、自动阻断风险操作、实时生成合规报告时,数据治理便完成了从‘成本消耗者’到‘价值创造者’的蜕变。数据治理(Data Governance)正是解决这些问题的‘交通规则体系’,通过建立统一的数据标准、流程和权责体系,让数据真正成为战略资产。“当企业数据量达到PB级时,常面临**‘数据沼泽’**困境:销售部门找不到最新的客户清单、财务系统与业务系统数据对不上、敏感信息泄露风险激增。据Gartner统计,建立API化数据服务。
2025-01-27 14:51:48
559
原创 Elasticsearch聚合分析:深入解析管道聚合
传统聚合操作只能生成平面结果,而**管道聚合(Pipeline Aggregation)**允许对现有聚合结果进行二次计算,实现真正的多维分析。“当面对海量数据时,简单的指标统计(如总和、平均值)往往无法满足需求。例如,在电商场景中,我们不仅需要统计。
2025-01-27 14:47:33
1348
原创 深入探索SVM:支持向量机的原理与应用
在文本分类、图像识别等领域表现出色。例如,在MNIST手写数字识别任务中,SVM的准确率可达98%以上,与浅层神经网络性能相当。“当数据中存在噪声或样本分布复杂时,传统分类器(如逻辑回归)容易陷入过拟合或欠拟合的困境。支持向量机(SVM)通过。原始空间线性不可分 → 核函数隐式映射到高维可分空间。:寻找能将两类样本分隔且间隔最大的超平面。求导并置零,最终得到对偶形式。
2025-01-27 14:41:50
813
原创 Java高并发IO模型深度指南:BIO、NIO、AIO核心解析与实战选型
使用BIO时,如果你的应用是小型且连接数固定,那么它是一个不错的选择。如果你的应用需要处理大量并发连接,但每个连接活跃度不高,那么选择NIO会更合适。对于需要处理大量活跃连接的高并发场景,AIO将是最佳选择。通过理解这些模型及其特性,你可以为你的Java应用程序选择最合适的I/O处理方式,从而提升性能和用户体验。
2025-01-27 14:39:10
781
原创 基于自然语言处理的垃圾短信识别系统:从原理到实战部署
23%包含诈骗链接**。传统的关键词过滤方法误判率高达41%,而基于NLP的智能识别系统能将准确率提升至。“每天早晨打开手机,你是否总能看到几条**「恭喜中奖」本文将手把手教你构建一个工业级垃圾短信过滤器。
2025-01-27 14:34:47
444
原创 深入理解TCP协议:从三次握手到流量控制的实战解析
你是否遇到过视频通话频繁卡顿、文件传输中途失败的问题?即便在稳定的WiFi环境下,数据传输仍可能因底层协议效率低下而受影响。作为互联网的‘基石协议’,TCP通过。当遇到卫星通信的高延迟或移动网络的频繁切换时,Google提出的QUIC协议(基于UDP)能否取代TCP?传统TCP又该如何通过。,观察当前TCP配置,尝试调整窗口大小体验吞吐量变化!遇到问题欢迎在评论区交流讨论。本文将用代码+抓包分析,揭示TCP的核心机制。“在5G和物联网时代,TCP的。(MPTCP)等技术进化?:在您的服务器上运行。
2025-01-27 14:32:39
326
原创 DeepSeek R1和V3区别
DeepSeek-V3以低成本和高通用性见长,适合广泛的应用场景;而R1通过强化学习实现了专业领域的推理突破,并在开源生态中提供了灵活的蒸馏方案。两者的互补性体现了DeepSeek在技术路径上的多样性,既满足通用需求,又推动前沿推理能力的发展。
2025-01-27 11:48:36
66500
3
原创 Flink流式计算入门
Apache Flink 是一个开源的流处理框架,专为处理大规模数据流而设计。它支持低延迟、高吞吐量的实时数据处理,并能够同时处理无界和有界的数据流。
2024-10-10 21:37:29
991
原创 Lisp是什么
LISP(全名为LISt Processor,即列表处理语言)是一种具有悠久历史的高级编程语言,由约翰·麦卡锡于1958年在麻省理工学院开发。LISP是第一个函数式编程语言,广泛应用于人工智能领域,并以其独特的表达方式和灵活性著称。
2024-10-10 16:57:03
1450
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人