- 数据处理的挑战:
- 海量数据清洗: 为了训练出强大的模型,需要使用海量的训练数据。 这些数据通常来源于网络抓取、书籍、代码等多种渠道。原始数据往往包含大量的噪声、错误和冗余信息,需要进行精细的清洗和过滤,才能保证训练数据的质量。
- 数据多样性和平衡性: 训练数据需要具有多样性,覆盖各种领域、主题和风格。同时,需要保证不同类型的数据之间的平衡,避免模型在某些领域表现过于突出,而在其他领域表现欠佳。
- 模型架构的挑战:
- 模型规模的扩展: 为了提升模型的能力,通常需要增加模型的参数数量。 然而,模型规模的扩展会带来计算复杂度和内存需求的增加,给训练和推理带来巨大的挑战。
- 模型结构的优化: 如何设计高效的模型结构,在保证模型能力的同时,降低计算复杂度和内存需求,是一个重要的研究方向。
- 多任务学习: 如何让模型同时学习多个任务,并且在不同任务之间共享知识,提高模型的泛化能力,是一个具有挑战性的问题。
- 训练的挑战:
- 分布式训练: 由于模型规模巨大,单台机器无法完成训练,需要采用分布式训练。 如何有效地将训练任务分配到多台机器上,并且保证机器之间的通信效率,是一个关键的问题。
- 计算资源: 训练大型语言模型需要大量的计算资源,包括GPU、内存和存储等。 如何有效地利用这些资源,提高训练效率,是一个重要的挑战。
- 梯度消失/爆炸: 在深度神经网络的训练过程中,容易出现梯度消失或爆炸的问题,导致模型无法收敛。 如何有效地解决这些问题,是一个关键的研究方向。
- Multi-Token Prediction (MTP) 技术 同时预测多个Token,提高训练效率。
- 推理的挑战:
- 推理速度: 在实际应用中,需要模型能够快速地进行推理,以满足用户的需求。 如何提高模型的推理速度,是一个重要的挑战。
- 内存占用: 模型在推理过程中需要占用大量的内存。 如何降低模型的内存占用,使其能够在资源受限的设备上运行,是一个重要的研究方向。
- 低精度计算的挑战
- FP8 训练 DeepSeek 使用 FP8 来加速计算并减少内存使用,但是保证模型精度稳定是一个挑战。
- 通讯优化的挑战
- 节点间通讯 需要优化节点间通讯,防止训练停滞。