引言
近年来,人工智能领域经历了飞速发展,各种大型语言模型(Large Language Model, LLM)层出不穷。在众多AI模型中,DeepSeek以其开源、低成本、高性能的特点脱颖而出,成为了中国AI领域的"国产之光"。本篇文章将深入探讨DeepSeek的技术背景、架构设计、训练框架以及应用场景,帮助开发者全面了解这一创新型AI模型。
DeepSeek是由中国初创公司深度求索(DeepSeek)开发的一系列开源AI模型,成立于2023年,专注于研究世界领先的通用人工智能底层模型与技术。公司由AI量化对冲基金幻方量化的掌门人梁文锋创立,这一背景为其在AI领域的技术积累奠定了坚实基础[20]。
DeepSeek的技术革命
从成本-性能曲线的重构
在DeepSeek出现之前,AI领域普遍认为大模型的性能与其参数量和计算资源投入呈严格正相关。这一观点几乎成为了业界的共识。然而,DeepSeek通过技术创新,重构了大模型的"成本-性能"曲线,同时大幅压缩了计算周期[