说明:本文的内容来自leetcode,网址https://leetcode-cn.com/
1.二维数组中的查找
在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
结果:给定 target = 5
,返回 true
。给定 target = 20
,返回 false
。限制:0 <= n <= 10000 <= m <= 1000
//暴力解法 时间复杂度:O(nm) 空间复杂度:O(1)
class Solution {
public boolean findNumberIn2DArray(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return false;
}
int rows = matrix.length, columns = matrix[0].length;
for (int i = 0; i < rows; i++) {
for (int j = 0; j < columns; j++) {
if (matrix[i][j] == target) {
return true;
}
}
}
return false;
}
}
//线性查找 时间复杂度:O(n+m) 空间复杂度:O(1)
class Solution {
public boolean findNumberIn2DArray(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return false;
}
int rows = matrix.length, columns = matrix[0].length;
int row = 0, column = columns - 1;
while (row < rows && column >= 0) {
int num = matrix[row][column];
if (num == target) {
return true;
} else if (num > target) {
column--;
} else {
row++;
}
}
return false;
}
}
方法二值得注意,节省了时间,由于给定的二维数组具备每行从左到右递增以及每列从上到下递增的特点,当访问到一个元素时,可以排除数组中的部分元素。
思想:从二维数组的右上角开始查找。如果当前元素等于目标值,则返回 true。如果当前元素大于目标值,则移到左边一列。如果当前元素小于目标值,则移到下边一行。
可以证明这种方法不会错过目标值。如果当前元素大于目标值,说明当前元素的下边的所有元素都一定大于目标值,因此往下查找不可能找到目标值,往左查找可能找到目标值。如果当前元素小于目标值,说明当前元素的左边的所有元素都一定小于目标值,因此往左查找不可能找到目标值,往下查找可能找到目标值。
1.若数组为空,返回 false
2.初始化行下标为 0,列下标为二维数组的列数减 1
3.重复下列步骤,直到行下标或列下标超出边界
- 获得当前下标位置的元素 num
- 如果 num 和 target 相等,返回 true
- 如果 num 大于 target,列下标减 1
- 如果 num 小于 target,行下标加 1
4.循环体执行完毕仍未找到元素等于 target ,说明不存在这样的元素,返回 false。
2.替换空格
请实现一个函数,把字符串 s
中的每个空格替换成"%20"。限制:0 <= s 的长度 <= 10000
输入:s = "We are happy."
输出:"We%20are%20happy."
class Solution {
public String replaceSpace(String s) {
int length = s.length();
char[] array = new char[length * 3];
int size = 0;
for (int i = 0; i < length; i++) {
char c = s.charAt(i);
if (c == ' ') {
array[size++] = '%';
array[size++] = '2';
array[size++] = '0';
} else {
array[size++] = c;
}
}
String newStr = new String(array, 0, size);
return newStr;
}
}
3.从尾到头打印链表
输入一个链表的头节点,从尾到头反过来返回每个节点的值(用数组返回)。限制:0 <= 链表长度 <= 10000
输入:head = [1,3,2]
输出:[2,3,1]
//使用栈,时间复杂度O(n),空间复杂度O(n)
class Solution {
public int[] reversePrint(ListNode head) {
Stack<ListNode> stack = new Stack<ListNode>();
ListNode temp = head;
while (temp != null) {
stack.push(temp);
temp = temp.next;
}
int size = stack.size();
int[] print = new int[size];
for (int i = 0; i < size; i++) {
print[i] = stack.pop().val;
}
return print;
}
}
4.重建二叉树
输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。限制:0 <= 节点个数 <= 5000
示例
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回下面的二叉树:
3
/ \
9 20
/ \
15 7
class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
if (preorder == null || preorder.length == 0) {
return null;
}
Map<Integer, Integer> indexMap = new HashMap<Integer, Integer>();
int length = preorder.length;
for (int i = 0; i < length; i++) {
indexMap.put(inorder[i], i);
}
TreeNode root = buildTree(preorder, 0, length - 1, inorder, 0, length - 1, indexMap);
return root;
}
public TreeNode buildTree(int[] preorder, int preorderStart, int preorderEnd, int[] inorder, int inorderStart, int inorderEnd, Map<Integer, Integer> indexMap) {
if (preorderStart > preorderEnd) {
return null;
}
int rootVal = preorder[preorderStart];
TreeNode root = new TreeNode(rootVal);
if (preorderStart == preorderEnd) {
return root;
} else {
int rootIndex = indexMap.get(rootVal);
int leftNodes = rootIndex - inorderStart, rightNodes = inorderEnd - rootIndex;
TreeNode leftSubtree = buildTree(preorder, preorderStart + 1, preorderStart + leftNodes, inorder, inorderStart, rootIndex - 1, indexMap);
TreeNode rightSubtree = buildTree(preorder, preorderEnd - rightNodes + 1, preorderEnd, inorder, rootIndex + 1, inorderEnd, indexMap);
root.left = leftSubtree;
root.right = rightSubtree;
return root;
}
}
}
5 斐波那契数列
写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项。斐波那契数列的定义如下:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
提示:0 <= n <= 100
//递归
class Solution {
int constant = 1000000007;
public int fib(int n) {
return fib(n, new HashMap());
}
public int fib(int n, Map<Integer, Integer> map) {
if (n < 2)
return n;
if (map.containsKey(n))
return map.get(n);
int first = fib(n - 1, map) % constant;
map.put(n - 1, first);
int second = fib(n - 2, map) % constant;
map.put(n - 2, second);
int res = (first + second) % constant;
map.put(n, res);
return res;
}
}
//非递归
public int fib(int n) {
int constant = 1000000007;
int first = 0;
int second = 1;
while (n-- > 0) {
int temp = first + second;
first = second % constant;
second = temp % constant;
}
return first;
}
6.旋转数组的最小数字
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。例如,数组 [3,4,5,1,2] 为 [1,2,3,4,5] 的一个旋转,该数组的最小值为1。
思想:采用二分查找法
class Solution {
public int minArray(int[] numbers) {
int low = 0;
int high = numbers.length - 1;
while (low < high) {
int pivot = low + (high - low) / 2;
if (numbers[pivot] < numbers[high]) {
high = pivot;
} else if (numbers[pivot] > numbers[high]) {
low = pivot + 1;
} else {
high -= 1;
}
}
return numbers[low];
}
}
7.矩阵中的路径
请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一格开始,每一步可以在矩阵中向左、右、上、下移动一格。如果一条路径经过了矩阵的某一格,那么该路径不能再次进入该格子。例如,在下面的3×4的矩阵中包含一条字符串“bfce”的路径(路径中的字母用加粗标出)。
[["a","b","c","e"],
["s","f","c","s"],
["a","d","e","e"]]
但矩阵中不包含字符串“abfb”的路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入这个格子。
public class Exist {
public static boolean exist(char[][] board, String word) {
char[] words = word.toCharArray();
for(int i = 0; i < board.length; i++) {
for(int j = 0; j < board[0].length; j++) {
if(dfs(board, words, i, j, 0))
return true;
}
}
return false;
}
public static boolean dfs(char[][] board, char[] word, int i, int j, int k) {
if(i >= board.length || i < 0 || j >= board[0].length || j < 0 || board[i][j] != word[k]) return false;
if(k == word.length - 1) return true;
char tmp = board[i][j];
board[i][j] = '/';
boolean res = dfs(board, word, i + 1, j, k + 1) || dfs(board, word, i - 1, j, k + 1) ||
dfs(board, word, i, j + 1, k + 1) || dfs(board, word, i , j - 1, k + 1);
board[i][j] = tmp;
return res;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
char[][] board = {{'a','b'},{'c','d'}};
String word = "dc";
// char[][] board = {{'a','b','c','e'},{'s','f','c','s'},{'a','d','e','e'}};
// String word = "abcced";
boolean res = exist(board,word);
System.out.print(res);
}
}
8.机器人的运动范围
地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?
提示:1 <= n, m <= 100, 0 <= k <= 20
输入: m = 3, n = 1, k = 0 输出:1
输入: m = 16, n = 8, k = 4 输出:15
广度优先搜索思路和算法
我们将行坐标和列坐标数位之和大于 k 的格子看作障碍物,那么这道题就是一道很传统的搜索题目,我们可以使用广度优先搜索或者深度优先搜索来解决它,本文选择使用广度优先搜索的方法来讲解。
那么如何计算一个数的数位之和呢?我们只需要对数 x 每次对 10 取余,就能知道数 x 的个位数是多少,然后再将 x 除 10,这个操作等价于将 x 的十进制数向右移一位,删除个位数(类似于二进制中的 >> 右移运算符),不断重复直到 x 为 0 时结束。
同时这道题还有一个隐藏的优化:我们在搜索的过程中搜索方向可以缩减为向右和向下,而不必再向上和向左进行搜索。如下图,我们展示了 16 * 16 的地图随着限制条件 k 的放大,可行方格的变化趋势,每个格子里的值为行坐标和列坐标的数位之和,蓝色方格代表非障碍方格,即其值小于等于当前的限制条件 k。我们可以发现随着限制条件 k 的增大,(0, 0) 所在的蓝色方格区域内新加入的非障碍方格都可以由上方或左方的格子移动一步得到。而其他不连通的蓝色方格区域会随着 k 的增大而连通,且连通的时候也是由上方或左方的格子移动一步得到,因此我们可以将我们的搜索方向缩减为向右或向下。
//广度优先搜索,时间、空间复杂度:O(mn)
class Solution {
public int movingCount(int m, int n, int k) {
if (k == 0) {
return 1;
}
Queue<int[]> queue = new LinkedList<int[]>();
// 向右和向下的方向数组
int[] dx = {0, 1};
int[] dy = {1, 0};
boolean[][] vis = new boolean[m][n];
queue.offer(new int[]{0, 0});
vis[0][0] = true;
int ans = 1;
while (!queue.isEmpty()) {
int[] cell = queue.poll();
int x = cell[0], y = cell[1];
for (int i = 0; i < 2; ++i) {
int tx = dx[i] + x;
int ty = dy[i] + y;
if (tx < 0 || tx >= m || ty < 0 || ty >= n || vis[tx][ty] || get(tx) + get(ty) > k) {
continue;
}
queue.offer(new int[]{tx, ty});
vis[tx][ty] = true;
ans++;
}
}
return ans;
}
private int get(int x) {
int res = 0;
while (x != 0) {
res += x % 10;
x /= 10;
}
return res;
}
}
//递推法 时间、空间复杂度:O(mn)
class Solution {
public int movingCount(int m, int n, int k) {
if (k == 0) {
return 1;
}
boolean[][] vis = new boolean[m][n];
int ans = 1;
vis[0][0] = true;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if ((i == 0 && j == 0) || get(i) + get(j) > k) {
continue;
}
// 边界判断
if (i - 1 >= 0) {
vis[i][j] |= vis[i - 1][j];
}
if (j - 1 >= 0) {
vis[i][j] |= vis[i][j - 1];
}
ans += vis[i][j] ? 1 : 0;
}
}
return ans;
}
private int get(int x) {
int res = 0;
while (x != 0) {
res += x % 10;
x /= 10;
}
return res;
}
}
9.剪绳子
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]...k[m-1] 。请问 k[0]*k[1]*...*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。2 <= n <= 58
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
【解题思路】动态规划
对于的正整数 n,当 n≥2 时,可以拆分成至少两个正整数的和。令 k 是拆分出的第一个正整数,则剩下的部分是 n−k,n−k 可以不继续拆分,或者继续拆分成至少两个正整数的和。由于每个正整数对应的最大乘积取决于比它小的正整数对应的最大乘积,因此可以使用动态规划求解。
dp数组的含义: dp[i] 表示将正整数 i 拆分成至少两个正整数的和之后,这些正整数的最大乘积。
边界条件: 0 不是正整数,1 是最小的正整数,0 和 1 都不能拆分,因此 dp[0]=dp[1]=0。
状态转移方程:
当 i≥2 时,假设对正整数 i 拆分出的第一个正整数是 j(1≤j<i),则有以下两种方案:
- 将 i 拆分成 j 和 i−j 的和,且 i−j 不再拆分成多个正整数,此时的乘积是 j×(i−j);
- 将 i 拆分成 j 和 i−j 的和,且 i−j 继续拆分成多个正整数,此时的乘积是 j×dp[i−j]。
因此,当 j 固定时,有 dp[i]=max(j×(i−j),j×dp[i−j])。由于 j 的取值范围是 1 到 i−1,需要遍历所有的 j 得到 dp[i] 的最大值,因此可以得到状态转移方程如下:
最终得到 dp[n] 的值即为将正整数 n 拆分成至少两个正整数的和之后,这些正整数的最大乘积。
class Solution {
public int integerBreak(int n) {
int[] dp = new int[n + 1];
for (int i = 2; i <= n; i++) {
for (int j = 1; j < i; j++) {
dp[i]= Math.max(dp[i], Math.max(j * (i - j), j * dp[i - j]));
}
}
return dp[n];
}
}
如果 2 <= n <= 1000, 当数据范围变大了。剪绳子可以用动态规划或者贪心做,这道题对于使用DP难度就增大了一些,因为数据范围变得比较大时,long已经不足以去存储中间结果的状态,但是由于DP做法是枚举各种剪的情况然后取最大值,因此只能通过使用BigInteger的方法去做。那么这个题范围变大的本意是想让我们使用贪心算法能更好的求解(毕竟BigInteger使用起来麻烦,贪心没有数据溢出的问题,它是找当下的最优解,不需要比较,中间结果可以直接取模)。
class Solution {
public int cuttingRope(int n) {
if(n == 2) {
return 1;
}
if(n == 3){
return 2;
}
int mod = (int)1e9 + 7;
long res = 1;
while(n > 4) {
res *= 3;
res %= mod;
n -= 3;
}
return (int)(res * n % mod);
}
}
10.数值的整数次方
实现函数double Power(double base, int exponent),求base的exponent次方。不得使用库函数,同时不需要考虑大数问题。
输入: 2.00000, 10
输出: 1024.00000
输入: 2.10000, 3
输出: 9.26100
public double myPow(double x, int n) {
double result = 1.0;
for (int i = n; i != 0; i /= 2, x *= x) {
if (i % 2 != 0) {
//i是奇数
result *= x;
}
}
return n < 0 ? 1.0 / result : result;
}
这道题需要注意的是for循环继续的条件
打印出来的 i 和 x 如下所示
10 2.0
5 4.0
2 16.0
1 256.0