项目需要处理图片,然后找了N久的解决办法,有的是通过提取image 的所有通道判断来解决,但是结果会发现耗时非常久,假设是一张1000*1000的图,也要循环1000000次,对于批处理非常麻烦,偶然看到一个解决方法,特此记录:
import cv2
import numpy as np
path = "./test.png"
src = cv2.imread(path)
# Point 1: 生成与白色部分对应的mask图像
mask = np.all(src[:,:,:] == [255, 255, 255], axis=-1)
# Point 2: 将图片从三通道转为四通道
dst = cv2.cvtColor(src, cv2.COLOR_BGR2BGRA)
# Point3: 以mask图像为基础,使白色部分透明化
dst[mask,3] = 0
# 保存图片
cv2.imwrite("dst.png", dst)
如果需要将图的透明底转为不透明,则是改动如下:
import cv2
import numpy as np
path = "./test.png" # 透明底的图
src = cv2.imread(path)
# Point 1: 生成获得所有颜色通道对应的mask图像
mask = np.all(src[:,:,:], axis=-1)
# Point 2: 将图片从四通道转为三通道
# dst = cv2.cvtColor(src, cv2.COLOR_BGRA2BGR) # 不要这一句,不然有透明通道会报错
# Point3: 以mask图像为基础,使不透明化
src[mask,3] = 255 # 主要是修改alpha通道为不透明
# 保存图片
cv2.imwrite("dst.png", src)
最终效果可能有点误差,但解决了图像从透明底改为不透明的情况 , 减少处理的时间