AmoebaNet论文和算法解析

AmoebaNet是谷歌团队提出的基于年龄进化算法的神经网络结构搜索方法,解决了网络架构参数更新的问题。通过随机初始化、选择、变异和淘汰过程,寻找最优子网络。在Cifar-10和ImageNet数据集上的实验表明,AmoebaNet表现优于传统网络和部分NAS方法。
摘要由CSDN通过智能技术生成

AmoebaNet,论文的全名是Regularized Evolution for Image Classifier Architecture Search,是一篇比较早的采用进化算法来做NAS的论文。

进化算法是传统人工智能中的一种群体启发式优化算法,它模拟生物学在自然界中的仿生原理,通过选择、交叉、变异等方式,一代又一代更新和进化,最终收敛于最优解的过程。

AmoebaNet是由谷歌团队Real等人提出的一种基于年龄进化算法的神经网络架构搜索。为了解决网络架构参数无法通过验证集精度的梯度传播来更新,之前的一些学者提出了用强化学习的思想来优化controller RNN。与强化学习相似,进化算法同样也不需要计算损失函数或者目标函数的梯度传播,甚至不需要目标函数是可导的,只需要一些简单易操作的编码处理,就可以优化目标函数。

在AmoebaNet里,采用的是遗传算法的一个变种,叫做年龄进化算法。群体中的每一个个体,代表着一种子网络,而个体的编码空间(或者说是搜索空间),则是支持直接引用NASNet的Cell和Block的设计,每一个个体,代表着对Cell的编码。

下图是AmoebaNet年龄进化算法的流程。
在这里插入图片描述
图1. AmoebaNet的年龄进化算法流程图

算法的步骤为:

  1. 随机初始化P个个体 的种群(也就是P个子网络),训练和验证这P个子网络获得它
Amoeba:分布式数据库Proxy解决方案 随着传统的数据库技术日趋成熟、计算机网络技术的飞速发展和应用范围的扩充,数据库应用 已经普遍建立于计算机网络之上。这时集中式数据库系统表现出它的不足:集中式处理,势必造成性 能瓶颈;应用程序集中在一台计算机上运行,一旦该计算机发生故障,则整个系统受到影响,可靠性 不高;集中式处理引起系统的规模和配置都不够灵活,系统的可扩充性差。在这种形势下,集中式数 据库将向分布式数据库发展。 分布式数据库系统的优点: 1、降低费用。分布式数据库在地理上可以式分布的。其系统的结构符合这种分布的要求。允许用 户在自己的本地录用、查询、维护等操作,实行局部控制,降低通信代价,避免集中式需要更高要求 的硬件设备。而且分布式数据库在单台机器上面数据量较少,其响应速度明显提升。 2、提高系统整体可用性。避免了因为单台数据库的故障而造成全部瘫痪的后果。 3、易于扩展处理能力和系统规模。分布式数据库系统的结构可以很容易地扩展系统,在分布式数 据库中增加一个新的节点,不影响现有系统的正常运行。这种方式比扩大集中式系统要灵活经济。在 集中式系统中扩大系统和系统升级,由于有硬件不兼容和软件改变困难等缺点,升级的代价常常是昂 贵和不可行的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值