DARTS论文和算法解析

DARTS,论文的全名是Differentiable Architecture Search,即可微分的架构搜索。

综合之前的一些NAS论文方法可以看出,不管是强化学习、进化算法还是SMBO,这些都无法通过像传统深度学习那样由Loss的梯度来更新网络架构,只能间接去优化生成子网络模型的控制器(Controller RNN,Predictor)或方法(进化算法)。

DARTS论文第一次把网络模型以可微分参数化的形式实现,网络模型和网络架构整合在一起,通过数据的训练集和验证集交替优化。在训练结束后,再从网络架构参数中解析出搜索出来的子网络。

DARTS论文的基本设计思想:

  1. 采用NASNet里的Cell和Block的设计方法;
  2. 对Cell里的所有Block的可能性架构参数化;
  3. DARTS搜索阶段训练的Cell架构是所有可能性的集合;
  4. 在验证集上对Cell的架构参数求导优化。

前面两点比较好理解,第3点怎么理解所有可能性的集合呢?

从之前的研究方法我们可以看出,每次都是先挑选出子网络后,再进行训练,要么是从头训练(大部分方法),要么在之前训练的基础上(ENAS)。DARTS避免了挑选子网络的过程,它将Cell里面所有的可能性以参数化的形式表示,在训练时,Cell里面所有的可能性连接和操作都会进行前向计算和反向推理,所有操作的模型参数均会进行更新,只是可能性更大的参数有更大的梯度更新。

DARTS的Cell结构图如下图所示。

图1. DARTS的Cell架构图
在这里插入图片描述

图1中的每一个小矩形(称为Node)表示的是特征图,第1个Node是Cell的输入,最后一个Node是Cell的输出。特征图之间的颜色线表示的是operation(操作),图中假设特征图之间只有三种operation可选空间(分别用红绿蓝表示)。图 ( a ) (a) (a)表示的是搜索问题,即两两特征图之间要用哪一种operation;图 ( b ) (b) (b)表示的是Cell中所有operation的集合;图 ( c ) (c) (c)表示经过训练后,各个operation的权重(表示选择可能性)变化值,越粗的表示参数权重越大;图 ( d ) (d) (d)表示最终选出的Cell架构,可以看出挑选的是当前Node跟前继Node中可能性最大的一条线(除了最后一个Node,与前继Node都挑选出最大可能性的线)。

图1中颜色线在DARTS中叫做架构参数 α \alpha α,Node表示的特征图为 x x x o o o表示操作。那么中间任意一个Node可以用公式表示为:

x ( j ) = ∑ i < j o ( i , j ) ( x ( i ) ) x^{(j)}=\sum_{i<j}o^{(i,j)}(x^{(i)}) x(j)=i<jo(i,j)(x(i))

其中, i i i j j j表示Node序号,公式的意思是中间Node是所有前继Node经过操作后之和。两个Node之间的操作可以表示为:

o ‾ ( i , j ) ( x ) = ∑ o ∈ O e x p ( α o ( i , j ) ) ∑ o ′ ∈ O e x p ( α o ′ ( i , j ) ) o ( x ) \overline{o}^{(i,j)}(x)=\sum_{o\in O}\frac{exp(\alpha_{o}^{(i,j)})}{\sum_{o^{'}\in O}exp(\alpha_{o^{'}}^{(i,j)})}o(x) o(i,j)(x)=oOoOexp(αo(i,j))exp(αo(i,j))o(x)

这个公式表示两个Node之间的操作是它们之间所有操作的softmax之和。

在训练的时候,需要交替对网络的模型参数 w w w和架构参数 α \alpha α进行优化,优化的目标函数是:

m i n α     L v a l ( w ∗ ( α ) , α ) s . t .     w ∗ ( α ) = a r g m i n w   L t r a i n ( w , α ) \begin{aligned} & \underset{\alpha}{min}~~~\mathcal {L}_{val}(w^{*}(\alpha), \alpha) \\ & s.t. ~~~ w^{*}(\alpha)=argmin_{w}~\mathcal {L}_{train}(w,\alpha) \end{aligned} αmin   Lval(w(α),α)s.t.   w(α)=argminw Ltrain(w,α)

训练的方法过程如下图所示:

图2. DARTS的搜索训练方法
在这里插入图片描述

大致的步骤只有两个,而且是交替进行:

  1. 固定架构参数,用训练数据集训练模型参数;
  2. 固定模型参数,用验证数据集训练架构参数。

训练结束后,选择子网络的方式:对于中间Node,每个Node会挑选出前继Node中可能性最大的两个作为连接对象,两个Node之间最多只有一条线(operation)可以连接,所以中间Node只有两个输入来源和对应的operation;最后的Node是所有前继Node(除了输入)按照channel维度concat起来的结果。

由于要同时训练所有的架构,所以Cell叠加的个数不能太大,也不能在大的数据集上进行搜索。作者在Cifar-10小数据集上进行搜索,叠加8个Cell,第一个Cell的输出通道为16,使用1个GPU(GTX 1080Ti)训练50个epoch,耗时1天。

搜索完成后,解析架构参数确定最佳子网络,将Cell个数扩充,并进行正式训练。DARTS搜索出来的网络在Cifar-10和ImageNet上的实验结果如下两图所示。

图3. DARTS在Cifar-10上的实验性能和对比
在这里插入图片描述

图4. DARTS在ImageNet上的实验性能和对比
在这里插入图片描述

从Cifar-10的实验可以看出,二阶梯度方法的DARTS精度只比NASNetAmoebaNet-B的方法差,但是在训练的计算资源和耗时上要远远小于它们。DARTS的搜索时间比ENAS长,但是精度比它高。

在ImageNet的实验上我们可以看到,DARTS的精度也能接近之前的NAS方法,同等参数量条件下与NASNet相当,比AmoebaNet和PNASNet差一些,但是在搜索消耗的GPU时长上,DARTS方法具有明显的优势。

  • 7
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值