使用单调队列的经典题目。
初始化队列:
classMyQueue{
public:
void pop(int value){
}
void push(int value){
}
int front(){
return que.front();
}
};
每次窗口移动的时候,调用que.pop(滑动窗口中移除元素的数值),que.push(滑动窗口添加元素的数值),然后que.front()就返回我们要的最大值。
对于窗口里的元素{2, 3, 5, 1 ,4},单调队列里只维护{5, 4} 就够了,保持单调队列里单调递减,此时队列出口元素就是窗口里最大元素。
设计单调队列的时候,pop,和push操作要保持如下规则:
pop(value):如果窗口移除的元素value等于单调队列的出口元素,那么队列弹出元素,否则不用任何操作
push(value):如果push的元素value大于入口元素的数值,那么就将队列入口的元素弹出,直到push元素的数值小于等于队列入口元素的数值为止
保持如上规则,每次窗口移动的时候,只要问que.front()就可以返回当前窗口的最大值。
为了更直观的感受到单调队列的工作过程,以题目示例为例,输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3,动画如下:
class Solution {
private:
class MyQueue{
public:
deque<int> que;
void pop(int value){
if(!que.empty() && value == que.front()){
que.pop_front();
}
}
void push(int value){
while(!que.empty() && value>que.back()){
que.pop_back();
}
que.push_back(value);
}
int front(){
return que.front();
}
};
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
MyQueue que;
vector<int> result;
for(int i =0;i<k;i++){
que.push(nums[i]);
}
result.push_back(que.front());
for(int i = k;i<nums.size();i++){
que.pop(nums[i-k]);
que.push(nums[i]);
result.push_back(que.front());
}
return result;
}
};
这道题目主要涉及到如下三块内容:
要统计元素出现频率(使用map统计)
对频率排序(使用优先级队列)
优先级队列:对外接口为从队头取元素,从队尾添加元素;内部元素自动按照元素的权值排列,缺省情况下priority_queue利用max-heap(大顶堆)完成对元素的排序,这个大顶堆是以vector为表现形式的complete binary tree(完全二叉树)。
什么是堆呢?
堆是一棵完全二叉树,树中每个结点的值都不小于(或不大于)其左右孩子的值。 如果父亲结点是大于等于左右孩子就是大顶堆,小于等于左右孩子就是小顶堆。
找出前K个高频元素
class Solution {
public:
class mycomparison{
public:
bool operator()(const pair<int, int>&lhs, const pair<int, int>& rhs){
return lhs.second > rhs.second;
}
};
vector<int> topKFrequent(vector<int>& nums, int k) {
//要统计元素出现频率
unordered_map<int, int> map;
for(int i=0;i<nums.size();i++){
map[nums[i]]++;
}
//对频率排序
//定义一个小顶堆,大小为k
priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison>pri_que;
for(unordered_map<int, int>::iterator it = map.begin();it!=map.end();it++){
pri_que.push(*it);
if(pri_que.size()>k){
pri_que.pop();
}
}
vector<int> result(k);
for(int i =k-1;i>=0;i--){
result[i]=pri_que.top().first;
pri_que.pop();
}
return result;
}
};