LeetCode刷题|day14 二叉树

二叉树理论部分

二叉树概念:树n(n>=0)个节点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根节点和两棵互不相交的、分别称为根节点的左子树和右子树的二叉树组成。

二叉树的特点:1)每个节点最多有两棵树,使用二叉树中不存在度大于2的节点;2)左子树和右子树是有顺序的,次序不能任意颠倒;3)即使树中某个节点只有一棵子树,也要区分它是左子树还是右子树。

二叉树种类:满二叉树和完全二叉树;

满二叉树:如果一棵二叉树只有度为0的节点和度为2的节点,并且度为0的结点(没有子节点)在同一层上,则这棵二叉树为满二叉树。

叶子结点:一棵树当中没有子结点(即度为0)的结点,称为叶子结点,简称“叶子”。 叶子是指度为0的结点,又称为终端结点。

  • 度的定义:节点所拥有的子树的数目称为该节点的度

  • 注意: 叶子节点的度为0

  • 树的度是树内各节点的度的最大值。

二叉树的度表示节点的子树或直接继承者的数目,二叉树的度是一个子树或单子树。2度是两个孩子,或者左和右子树有两个叉树,最大度数为2。

这棵二叉树为满二叉树,也可以说深度为k,有2^k-1个节点的二叉树。

完全二叉树:在完全二叉树中,除了最底层的节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在改成最左边的若干位置。若最底层为第h层,则该层包含 1~ 2^(h-1) 个节点。

二叉搜索树

二叉搜索树是一个有序树。

若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值;

若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值;

它的左、右子树也分别为二叉排序树。

平衡二叉搜索树:又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

最后一棵 不是平衡二叉树,因为它的左右两个子树的高度差的绝对值超过了1。

C++中map、set、multimap,multiset的底层实现都是平衡二叉搜索树,所以map、set的增删操作时间时间复杂度是logn,注意unordered_map、unordered_set,unordered_map、unordered_set底层实现是哈希表

二叉树的存储方式

二叉树可以链式存储,也可以顺序存储。

那么链式存储方式就用指针, 顺序存储的方式就是用数组。

顾名思义就是顺序存储的元素在内存是连续分布的,而链式存储则是通过指针把分布在各个地址的节点串联一起。

链式存储如图:

顺序存储方式:

用数组来存储二叉树如何遍历的呢?

如果父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2。

但是用链式表示的二叉树,更有利于我们理解,所以一般我们都是用链式存储二叉树。

所以大家要了解,用数组依然可以表示二叉树。

二叉树的遍历方式

二叉树主要有两种遍历方式:

  1. 深度优先遍历:先往深走,遇到叶子节点再往回走。

  1. 广度优先遍历:一层一层的去遍历。

这两种遍历是图论中最基本的两种遍历方式,后面在介绍图论的时候 还会介绍到。

那么从深度优先遍历和广度优先遍历进一步拓展,才有如下遍历方式:

  • 深度优先遍历

  • 前序遍历(递归法,迭代法)

  • 中序遍历(递归法,迭代法)

  • 后序遍历(递归法,迭代法)

  • 广度优先遍历

  • 层次遍历(迭代法)

二叉树的定义

struct TreeNode{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

二叉树的递归遍历

递归算法三要素:

  1. 确定递归函数的参数和返回值:确定那些参数是递归的过程中需要处理的,那么就在递归函数里加上这个参数,并且还要明确每次递归的返回值是什么,进而确定递归函数的返回类型;

  1. 确定终止条件:写完了递归算法, 运行的时候,经常会遇到栈溢出的错误,就是没写终止条件或者终止条件写的不对,操作系统也是用一个栈的结构来保存每一层递归的信息,如果递归没有终止,操作系统的内存栈必然就会溢出。

  1. 确定单层递归逻辑:确定每一层递归需要处理的信息。在这里也就会重复调用自己来实现递归的过程。

144. 二叉树的前序遍历 - 力扣(LeetCode)

class Solution {
public:
    void traversal(TreeNode* cur, vector<int>& vec){
        if(cur==NULL) return;
        vec.push_back(cur->val);
        traversal(cur->left,vec);
        traversal(cur->right,vec);
    }
    vector<int> preorderTraversal(TreeNode* root) {
        vector<int> result;
        traversal(root, result);
        return result;
    }
};

94. 二叉树的中序遍历 - 力扣(LeetCode)

class Solution {
public:
    void traversal(TreeNode* cur, vector<int>& vec){
        if(cur==NULL) return;
        traversal(cur->left, vec);
        vec.push_back(cur->val);
        traversal(cur->right, vec);
    }
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> result;
        traversal(root, result);
        return result;
    }
};

145. 二叉树的后序遍历 - 力扣(LeetCode)

class Solution {
public:
    void traversal(TreeNode* cur, vector<int>& vec){
        if(cur==NULL) return;
        traversal(cur->left,vec);
        traversal(cur->right,vec);
        vec.push_back(cur->val);
    }
    vector<int> postorderTraversal(TreeNode* root) {
        vector<int> result;
        traversal(root, result);
        return result;
    }
};

二叉树的迭代遍历

迭代遍历使用栈(先进后出)实现;

前序遍历

前序遍历为中左右,每次先处理的是中间节点,那么先将根节点放入栈中,然后再将右孩子加入栈中,再加入左孩子。这样出栈的时候顺序才为中左右。

class Solution {
public:
    vector<int> preorderTraversal(TreeNode* root) {
        stack<TreeNode*> st;
        vector<int> result;
        if(root==NULL) return result;
        st.push(root);
        while(!st.empty()){
            TreeNode* node = st.top();
            st.pop();
            result.push_back(node->val);
            if(node->right) st.push(node->right);
            if(node->left) st.push(node->left);
        }
        return result;
        
    }
};

后序遍历

先序遍历是中左右,后续遍历是左右中,那么我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了,如下图:

class Solution {
public:
    vector<int> postorderTraversal(TreeNode* root) {
        stack<TreeNode*> st;
        vector<int> result;
        if(root==NULL) return result;
        st.push(root);
        while(!st.empty()){
            TreeNode* node = st.top();
            st.pop();
            result.push_back(node->val);
            if(node->left) st.push(node->left);
            if(node->right) st.push(node->right);
        }
        reverse(result.begin(),result.end());
        return result;
        
    }
};

中序遍历

class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> result;
        stack<TreeNode*> st;
        TreeNode* cur = root;
        while(cur!=NULL || !st.empty()){
            if(cur!=NULL){
                st.push(cur);
                cur=cur->left;
            }else{
                cur=st.top();
                st.pop();
                result.push_back(cur->val);
                cur=cur->right;
            }
        }
        return result;
    }
};

二叉树的统一迭代法

在使用栈做递归的时候,无法解决访问节点(遍历节点)和处理节点(将元素放到结果集)不一致的情况,那么我们就将访问的节点放入栈中,把要处理的节点也放入栈中但是要做标记。如何标记?就是要处理的节点放入栈之后,紧接着放入一个空指针作为标记。这种方法也可以叫做标记法。

中序遍历:

class Solution{
public:
    vector<int>inorderTraversal(TreeNode* root){
        vector<int> result;
        stack<TreeNode*> st;
        if(root !=NULL) st.push(root);
        while(!st.empty()){
            TreeNode* node = st.top();
        if(node !=NULL){
            st.pop();// 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
            if(node->right) st.push(node->right);// 添加右节点(空节点不入栈)

            st.push(node);// 添加中节点
            st.push(NULL);// 中节点访问过,但是还没有处理,加入空节点做为标记。
            if(node->left) st.push(node->left);// 添加左节点(空节点不入栈)
            }else{// 只有遇到空节点的时候,才将下一个节点放进结果集
                st.pop();// 将空节点弹出
                node = st.top();// 重新取出栈中元素
                st.pop();
                result.push_back(node->val);// 加入到结果集
            }
        }
        return result;
    }
};

前序遍历:

class Solution{
public:
    vector<int>inorderTraversal(TreeNode* root){
        vector<int> result;
        stack<TreeNode*> st;
        if(root !=NULL) st.push(root);
        while(!st.empty()){
            TreeNode* node = st.top();
        if(node !=NULL){
            st.pop();// 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
            if(node->right) st.push(node->right);// 添加右节点(空节点不入栈)
            if(node->left) st.push(node->left);// 添加右节点
            st.push(node);// 添加中节点
            st.push(NULL);// 中节点访问过,但是还没有处理,加入空节点做为标记。
            }else{// 只有遇到空节点的时候,才将下一个节点放进结果集
                st.pop();// 将空节点弹出
                node = st.top();// 重新取出栈中元素
                st.pop();
                result.push_back(node->val);// 加入到结果集
            }
        }
        return result;
    }
};

后序遍历:

class Solution{
public:
    vector<int>inorderTraversal(TreeNode* root){
        vector<int> result;
        stack<TreeNode*> st;
        if(root !=NULL) st.push(root);
        while(!st.empty()){
            TreeNode* node = st.top();
        if(node !=NULL){
            st.pop();// 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
            st.push(node);// 添加中节点
            st.push(NULL);// 中节点访问过,但是还没有处理,加入空节点做为标记。
            if(node->right) st.push(node->right);// 添加右节点(空节点不入栈)
            if(node->left) st.push(node->left);// 添加右节点
            }else{// 只有遇到空节点的时候,才将下一个节点放进结果集
                st.pop();// 将空节点弹出
                node = st.top();// 重新取出栈中元素
                st.pop();
                result.push_back(node->val);// 加入到结果集
            }
        }
        return result;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值