二叉树理论部分
二叉树概念:树n(n>=0)个节点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根节点和两棵互不相交的、分别称为根节点的左子树和右子树的二叉树组成。
二叉树的特点:1)每个节点最多有两棵树,使用二叉树中不存在度大于2的节点;2)左子树和右子树是有顺序的,次序不能任意颠倒;3)即使树中某个节点只有一棵子树,也要区分它是左子树还是右子树。
二叉树种类:满二叉树和完全二叉树;
满二叉树:如果一棵二叉树只有度为0的节点和度为2的节点,并且度为0的结点(没有子节点)在同一层上,则这棵二叉树为满二叉树。
叶子结点:一棵树当中没有子结点(即度为0)的结点,称为叶子结点,简称“叶子”。 叶子是指度为0的结点,又称为终端结点。
度
度的定义:节点所拥有的子树的数目称为该节点的度
注意: 叶子节点的度为0
树的度是树内各节点的度的最大值。
二叉树的度表示节点的子树或直接继承者的数目,二叉树的度是一个子树或单子树。2度是两个孩子,或者左和右子树有两个叉树,最大度数为2。
这棵二叉树为满二叉树,也可以说深度为k,有2^k-1个节点的二叉树。
完全二叉树:在完全二叉树中,除了最底层的节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在改成最左边的若干位置。若最底层为第h层,则该层包含 1~ 2^(h-1) 个节点。
二叉搜索树
二叉搜索树是一个有序树。
若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
它的左、右子树也分别为二叉排序树。
平衡二叉搜索树:又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
最后一棵 不是平衡二叉树,因为它的左右两个子树的高度差的绝对值超过了1。
C++中map、set、multimap,multiset的底层实现都是平衡二叉搜索树,所以map、set的增删操作时间时间复杂度是logn,注意unordered_map、unordered_set,unordered_map、unordered_set底层实现是哈希表。
二叉树的存储方式
二叉树可以链式存储,也可以顺序存储。
那么链式存储方式就用指针, 顺序存储的方式就是用数组。
顾名思义就是顺序存储的元素在内存是连续分布的,而链式存储则是通过指针把分布在各个地址的节点串联一起。
链式存储如图:
顺序存储方式:
用数组来存储二叉树如何遍历的呢?
如果父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2。
但是用链式表示的二叉树,更有利于我们理解,所以一般我们都是用链式存储二叉树。
所以大家要了解,用数组依然可以表示二叉树。
二叉树的遍历方式
二叉树主要有两种遍历方式:
深度优先遍历:先往深走,遇到叶子节点再往回走。
广度优先遍历:一层一层的去遍历。
这两种遍历是图论中最基本的两种遍历方式,后面在介绍图论的时候 还会介绍到。
那么从深度优先遍历和广度优先遍历进一步拓展,才有如下遍历方式:
深度优先遍历
前序遍历(递归法,迭代法)
中序遍历(递归法,迭代法)
后序遍历(递归法,迭代法)
广度优先遍历
层次遍历(迭代法)
二叉树的定义
struct TreeNode{
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
二叉树的递归遍历
递归算法三要素:
确定递归函数的参数和返回值:确定那些参数是递归的过程中需要处理的,那么就在递归函数里加上这个参数,并且还要明确每次递归的返回值是什么,进而确定递归函数的返回类型;
确定终止条件:写完了递归算法, 运行的时候,经常会遇到栈溢出的错误,就是没写终止条件或者终止条件写的不对,操作系统也是用一个栈的结构来保存每一层递归的信息,如果递归没有终止,操作系统的内存栈必然就会溢出。
确定单层递归逻辑:确定每一层递归需要处理的信息。在这里也就会重复调用自己来实现递归的过程。
class Solution {
public:
void traversal(TreeNode* cur, vector<int>& vec){
if(cur==NULL) return;
vec.push_back(cur->val);
traversal(cur->left,vec);
traversal(cur->right,vec);
}
vector<int> preorderTraversal(TreeNode* root) {
vector<int> result;
traversal(root, result);
return result;
}
};
class Solution {
public:
void traversal(TreeNode* cur, vector<int>& vec){
if(cur==NULL) return;
traversal(cur->left, vec);
vec.push_back(cur->val);
traversal(cur->right, vec);
}
vector<int> inorderTraversal(TreeNode* root) {
vector<int> result;
traversal(root, result);
return result;
}
};
class Solution {
public:
void traversal(TreeNode* cur, vector<int>& vec){
if(cur==NULL) return;
traversal(cur->left,vec);
traversal(cur->right,vec);
vec.push_back(cur->val);
}
vector<int> postorderTraversal(TreeNode* root) {
vector<int> result;
traversal(root, result);
return result;
}
};
二叉树的迭代遍历
迭代遍历使用栈(先进后出)实现;
前序遍历
前序遍历为中左右,每次先处理的是中间节点,那么先将根节点放入栈中,然后再将右孩子加入栈中,再加入左孩子。这样出栈的时候顺序才为中左右。
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
stack<TreeNode*> st;
vector<int> result;
if(root==NULL) return result;
st.push(root);
while(!st.empty()){
TreeNode* node = st.top();
st.pop();
result.push_back(node->val);
if(node->right) st.push(node->right);
if(node->left) st.push(node->left);
}
return result;
}
};
后序遍历
先序遍历是中左右,后续遍历是左右中,那么我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了,如下图:
class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
stack<TreeNode*> st;
vector<int> result;
if(root==NULL) return result;
st.push(root);
while(!st.empty()){
TreeNode* node = st.top();
st.pop();
result.push_back(node->val);
if(node->left) st.push(node->left);
if(node->right) st.push(node->right);
}
reverse(result.begin(),result.end());
return result;
}
};
中序遍历
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st;
TreeNode* cur = root;
while(cur!=NULL || !st.empty()){
if(cur!=NULL){
st.push(cur);
cur=cur->left;
}else{
cur=st.top();
st.pop();
result.push_back(cur->val);
cur=cur->right;
}
}
return result;
}
};
二叉树的统一迭代法
在使用栈做递归的时候,无法解决访问节点(遍历节点)和处理节点(将元素放到结果集)不一致的情况,那么我们就将访问的节点放入栈中,把要处理的节点也放入栈中但是要做标记。如何标记?就是要处理的节点放入栈之后,紧接着放入一个空指针作为标记。这种方法也可以叫做标记法。
中序遍历:
class Solution{
public:
vector<int>inorderTraversal(TreeNode* root){
vector<int> result;
stack<TreeNode*> st;
if(root !=NULL) st.push(root);
while(!st.empty()){
TreeNode* node = st.top();
if(node !=NULL){
st.pop();// 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
if(node->right) st.push(node->right);// 添加右节点(空节点不入栈)
st.push(node);// 添加中节点
st.push(NULL);// 中节点访问过,但是还没有处理,加入空节点做为标记。
if(node->left) st.push(node->left);// 添加左节点(空节点不入栈)
}else{// 只有遇到空节点的时候,才将下一个节点放进结果集
st.pop();// 将空节点弹出
node = st.top();// 重新取出栈中元素
st.pop();
result.push_back(node->val);// 加入到结果集
}
}
return result;
}
};
前序遍历:
class Solution{
public:
vector<int>inorderTraversal(TreeNode* root){
vector<int> result;
stack<TreeNode*> st;
if(root !=NULL) st.push(root);
while(!st.empty()){
TreeNode* node = st.top();
if(node !=NULL){
st.pop();// 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
if(node->right) st.push(node->right);// 添加右节点(空节点不入栈)
if(node->left) st.push(node->left);// 添加右节点
st.push(node);// 添加中节点
st.push(NULL);// 中节点访问过,但是还没有处理,加入空节点做为标记。
}else{// 只有遇到空节点的时候,才将下一个节点放进结果集
st.pop();// 将空节点弹出
node = st.top();// 重新取出栈中元素
st.pop();
result.push_back(node->val);// 加入到结果集
}
}
return result;
}
};
后序遍历:
class Solution{
public:
vector<int>inorderTraversal(TreeNode* root){
vector<int> result;
stack<TreeNode*> st;
if(root !=NULL) st.push(root);
while(!st.empty()){
TreeNode* node = st.top();
if(node !=NULL){
st.pop();// 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
st.push(node);// 添加中节点
st.push(NULL);// 中节点访问过,但是还没有处理,加入空节点做为标记。
if(node->right) st.push(node->right);// 添加右节点(空节点不入栈)
if(node->left) st.push(node->left);// 添加右节点
}else{// 只有遇到空节点的时候,才将下一个节点放进结果集
st.pop();// 将空节点弹出
node = st.top();// 重新取出栈中元素
st.pop();
result.push_back(node->val);// 加入到结果集
}
}
return result;
}
};