TOYS
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 16234 | Accepted: 7786 |
Description
Calculate the number of toys that land in each bin of a partitioned toy box.
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.
John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box.
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.
John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box.
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.
Input
The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.
Output
The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.
Sample Input
5 6 0 10 60 0 3 1 4 3 6 8 10 10 15 30 1 5 2 1 2 8 5 5 40 10 7 9 4 10 0 10 100 0 20 20 40 40 60 60 80 80 5 10 15 10 25 10 35 10 45 10 55 10 65 10 75 10 85 10 95 10 0
Sample Output
0: 2 1: 1 2: 1 3: 1 4: 0 5: 1 0: 2 1: 2 2: 2 3: 2 4: 2
Hint
As the example illustrates, toys that fall on the boundary of the box are "in" the box.
题意:一个矩形被一些线段分成不同区域,给出一些点,求每个区域的点的个数。
思路:用叉积判断一下点和线段的相对位置即可。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
#include <iostream>
#include <string>
#include <set>
#include <map>
using namespace std;
const int MAXN = 5000+10;
const int INF=1e9+7;
const double eps=1e-8;
const double pi=acos(-1.0);
//计算几何误差修正
//输入为一个double类型的数,返回-1表示负数,1表示正数,0表示x为0
int cmp(double x){
if(fabs(x)<eps)
return 0;
if(x>0) return 1;
return -1;
}
//计算几何点类
inline double sqr(double x){
return x*x;
}
struct point{
double x,y;
point(){}
point(double a,double b):x(a),y(b){}
void input(){
scanf("%lf%lf",&x,&y);
}
//加法
friend point operator + (const point &a,const point &b){
return point(a.x+b.x,a.y+b.y);
}
//减法
friend point operator - (const point &a,const point &b){
return point(a.x-b.x,a.y-b.y);
}
//判断相等
friend bool operator == (const point &a,const point &b){
return cmp(a.x-b.x)==0&&cmp(a.y-b.y)==0;
}
//倍增
friend point operator * (const point &a,const double &b){
return point(a.x*b,a.y*b);
}
//除法
friend point operator / (const point &a,const double b){
return point(a.x/b,a.y/b);
}
//模长
double norm(){
return sqrt(sqrt(x)+sqr(y));
}
};
//叉积,a×b>0代表a在b的顺时针方向,<0代表a在b的逆时针方向,等于0代表a和b向量共线,但不确定方向是否相同
double det(const point &a,const point &b){
return a.x*b.y-a.y*b.x;
}
//点积
double dot(const point &a,const point &b){
return a.x*b.x+a.y*b.y;
}
//距离
double dist(const point &a,const point &b){
return (a-b).norm();
}
//op向量绕原点逆时针旋转A(弧度)
point rotate_point(const point &p,double A){
double tx=p.x,ty=p.y;
return point(tx*cos(A)-ty*sin(A),tx*sin(A)+ty*cos(A));
}
int n,m;
point a[MAXN];
point b[MAXN];
point line[MAXN];
int res[MAXN];
int main(){
double x1,y1,x2,y2;
while(scanf("%d",&n)&&n){
memset(res,0,sizeof res);
scanf("%d%lf%lf%lf%lf",&m,&x1,&y1,&x2,&y2);
line[0].x=0;
line[0].y=y1-y2;
b[0].x=x1;
b[0].y=y2;
for(int i=1;i<=n;i++){
line[i].y=y1-y2;
double u,l;
scanf("%lf%lf",&u,&l);
line[i].x=u-l;
b[i].x=l;
b[i].y=y2;
}
n++;
line[n].x=0;
line[n].y=y1-y2;
b[n].x=x2;
b[n].y=y2;
for(int i=0;i<m;i++){
a[i].input();
for(int j=0;j<n;j++){
point t1=a[i]-b[j];
point t2=a[i]-b[j+1];
//cout<<dot(t1,line[j])<<" "<<dot(t2,line[j+1])<<endl;
if(det(t1,line[j])>0&&det(t2,line[j+1])<0){
res[j]++;
break;
}
}
}
for(int i=0;i<n;i++){
printf("%d: %d\n",i,res[i]);
}
printf("\n");
}
}