MySQL: 索引(上)

1、简介  

        索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。一本500页的书,如果你想快速找到其中的某一个知识点,在不借助目录的情况下,就会很麻烦耗时。同样,对于数据库的表而言,索引其实就是它的“目录”。

一个表只能有一个主键

         一个加了主键的表,并不能被称之为「表」。一个没加主键的表,它的数据无序的放置在磁盘存储器上,一行一行的排列的很整齐, 跟认知中的「表」很接近。如果给表上了主键,那么表在磁盘上的存储结构就由整齐排列的结构转变成了树状结构,也就是「平衡树」结构,换句话说,就是整个表就变成了一个索引,也就是所谓的「聚集索引」。 这就是为什么一个表只能有一个主键(一个表只能有一个主键以确保其数据的唯一性,它可以由一个或多个字段组成), 一个表只能有一个「聚集索引」,因为主键的作用就是把「表」的数据格式转换成「索引(平衡树)」的格式放置

2、索引的常见模型

         索引的出现是为了提高查询效率,但是实现索引的方式却有很多种,所以这里也就引入了索引模型的概念。可以用于提高读写效率的数据结构很多,这里介绍三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树

哈希表

        哈希表是一种以键-值(key-value)存储数据的结构,我们只要输入待查找的值即key,就可以找到其对应的值即Value。哈希表这种结构适用于只有等值查询的场景,比如Memcached及其他一些NoSQL引擎。

有序数组

        有序数组在等值查询和范围查询场景中的性能就都非常优秀。但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。所以,有序数组索引只适用于静态存储引擎,比如你要保存的是2017年某个城市的所有人口信息,这类不会再修改的数据。

搜索树

        二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。这个时间复杂度是O(log(N))。当然为了维持O(log(N))的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是O(log(N))

        树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。

        如果一棵100万节点的平衡二叉树,树高20。一次查询可能需要访问20个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要10 ms左右的寻址时间。也就是说,对于一个100万行的表,如果使用二叉树来存储,单独访问一个行可能需要20个10 ms的时间,这个查询就会比较慢。

        为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N叉”树。这里,“N叉”树中的“N”取决于数据块的大小。

        以InnoDB的一个整数字段索引为例,这个N差不多是1200。这棵树高是4的时候,就可以存1200的3次方个值,这已经17亿了。考虑到树根的数据块总是在内存中的,一个10亿行的表上一个整数字段的索引,查找一个值最多只需要访问3次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。

        N叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。

3、InnoDB 的索引模型

        在InnoDB中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。InnoDB使用了B+树索引模型,所以数据都是存储在B+树中的。每一个索引在InnoDB里面对应一棵B+树。

假设,我们有一个主键列为id的表,表中有字段k,并且在k上也有索引。即有一个主键聚集索引和一个普通索引。

表中Row1~Row5的(id,k)值分别为(1,100)、(2,200)、(3,300)、(5,500)和(6,600),两棵树的示例示意图如下。

 

从图中可以看出,根据叶子节点的内容,索引类型分为主键索引非主键索引

主键索引的叶子节点存的是整行数据。在InnoDB里,主键索引也被称为聚簇索引或者聚集索引(clustered index)。

非主键索引的叶子节点内容是主键的值。在InnoDB里,非主键索引也被称为二级索引或者普通索引(secondary index)。

根据上面的索引结构说明,来讨论一个问题:基于主键索引和普通索引的查询有什么区别?

        如果语句是select * from T where id=5,即主键查询方式,则只需要搜索id这棵B+树;
        如果语句是select * from T where k=5,即普通索引查询方式,则需要先搜索k索引树,得到id的值为5,再到id索引树搜索一次。这个过程称为回表。
也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询

4、索引维护

        B+树为了维护索引有序性,在插入新值的时候需要做必要的维护。以上面这个图为例,如果插入新的行ID值为7,则只需要在Row5的记录后面插入一个新记录。如果新插入的ID值为4,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。

        有些建表规范里面,要求建表语句里一定要有自增主键。自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOT NULL PRIMARY KEY AUTO_INCREMENT。插入新记录的时候可以不指定ID的值,系统会获取当前ID最大值加1作为下一条记录的ID值。也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。

        因为普通索引树中叶子节点存放的是主键的数据,所以主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。

5、小结

B+树能够很好地配合磁盘的读写特性,减少单次查询的磁盘访问次数

由于InnoDB是索引组织表,一般情况下建议创建一个自增主键,这样非主键索引占用的空间最小

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

你认识小汐吗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值