Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
For example:Given the below binary tree and
sum = 22
,
5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1
return true, as there exist a root-to-leaf path 5->4->11->2
which sum is 22.
Analysis:
Very classic recursive problem.
Check every path of the tree (recursively), with the sum, if find the leaf node with sum==target, then return true.
The way of thinking this problem:
(1) The question requires only true/false return, so the final result is the || operation of all the possible path.
The return value of the recursion is go root.left || go root.right
(2) Parameters used in recursion, only the sum and the current node
(3) Condition: if the node is leaf
if sum == target return true;
else return false
else return root.left || root.right
How to define the leaf node? An idea is check the left and right children, all are NULL, then it's a leaf node.
java
public boolean hasPathSum(TreeNode root, int sum) {
return getSum(root, 0, sum);
}
public boolean getSum(TreeNode root, int sum, int target){
if(root == null) return false;
sum+=root.val;
if(root.left == null && root.right == null){
if(sum == target) return true;
else return false;
}
return getSum(root.left, sum, target)|| getSum(root.right, sum, target);
}
c++
void judgeSubpath(TreeNode* root, int sum, int target, bool &result){
if(root == NULL) return;
sum += root->val;
if(root->left == NULL && root->right == NULL){
if(sum == target)
result = true;
return;
}
judgeSubpath(root->left,sum,target,result);
judgeSubpath(root->right,sum,target,result);
}
bool hasPathSum(TreeNode *root, int sum) {
bool result = false;
judgeSubpath(root,0,sum,result);
return result;
}
Updated
转换一下想法,不累计求和,搜索过程减sum直到0
bool hasPathSum(TreeNode *root, int sum) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if (root==NULL) {return false;}
if ( (root->left==NULL) && (root->right==NULL) && (sum-root->val==0) ) {return true;}
return (hasPathSum(root->left, sum-root->val) || hasPathSum(root->right, sum-root->val));
}