题目描述
【题目背景】
今年兔窝镇胡萝卜大丰收,但是兔子一家却因为胡萝卜的分配起了争执。按照每年的分配惯例,今年也要求黑、白、灰三只兔子都能分到胡萝卜,并且还要求黑兔子分到的胡萝卜数不能少于白兔子,白兔子分到的胡萝卜数不能少于灰兔子。现在兔子一家一共有N根胡萝卜,小兔子们想知道如果所有的胡萝卜都必须分完,那按这种分配方法,今年一共有多少种分配方法是合理的,你能帮帮他们么?
【题目描述】
现将N (3≤N≤1000) 根胡萝卜全部分配给黑、白、灰三只兔子,分配规则如下:
1) 黑、白、灰三只兔子必须都能分到胡萝卜;
2) 所有胡萝卜必须全部分完,不能有剩余;
3) 黑兔子的胡萝卜数不少于白兔子的胡萝卜数;
4) 白兔子的胡萝卜数不少于灰兔子的胡萝卜数;
请按照规则计算,将N根胡萝卜全部分配给三只兔子,共有多少种不同的分配方法。
例如:N = 8,按照分配规则有5种不同的分配方法,具体分配方法如下图:
输入格式
第一行有1个正整数,表示一共有多少根胡萝卜。
输出格式
输出一行一个整数,表示一共有多少种分配方式。
样例输入content_copy
8
样例输出content_copy
5
#include<bits/stdc++.h>
using namespace std;
int main(){
int a,cnt1=0,cnt2=0;
cin>>a;
for(int i=a/3;i<=a-2;i++){
for(int j=1;j<=a/3*2;j++){
if(j>i)continue;
for(int k=1;k<=a/3;k++){
if(k>j)continue;
if(i+j+k==a)cnt1++;
}
}
}
cout<<cnt1;
return 0;
}