洛谷 P1066 [NOIP2006 提高组] 2^k进制数

题目

P1066 [NOIP2006 提高组] 2^k进制数

分析

公式

先分析约束条件:

  1. r至少2位;
  2. r每一位的数都严格比右边数位的数小,即r各个位上的数字是递增的;
  3. 将该数转化为2进制后,总位数不能超过w。(举几个例子发现,一个n位的2^k进制数,转成二进制之后的位数为nk,所以r的位数不能超过$\lceil \dfrac{w}{k} \rceil$

因为w \mod k不一定是0,所以首位转二进制后可能并不是的完整的一段,需要特殊考虑。

首先看首位填0的情况,剩下的每一位都可以选择2^k-1种数中的一个,由于数字各个位是递增的,只有一种排列方式,所以这种情况的数有\sum^{\lfloor \frac{w}{k} \rfloor}_{i=2} {​{2^k-1} \choose {i}}

再来考虑最高位不为0的情况,由于位数最多w,所以最高位转二进制后的位数最多为n \mod k,故除了0以外,最多可以填的数有2^{w \mod k}-1种,由于各个位上的数字是递增的,所以只能从大于最高位的数里面选,故这种情况下的数有\sum^{2^{w \mod k}-1}_{i=1} {​{2^k-i-1} \choose {\lfloor \frac{w}{k} \rfloor}}

结论:设满足题意的数有\operatorname {G}(k,w)个,则\operatorname {G}(k,w)可以如下计算:

\operatorname {G}(k,w)={\sum^{\lfloor \frac{w}{k} \rfloor}_{i=2} {​{2^k-1} \choose {i}}}+\sum^{2^{w \mod k}-1}_{i=1} {​{2^k-i-1} \choose {\lfloor \frac{w}{k} \rfloor}}

高精组合数

由于答案很大,longlong存不下,需要高精。由于要算组合数,最大的问题就是设计计算n \choose m的函数

先回顾公式\dbinom{n}{m}=\dfrac{n \times {(n-1)} \times {(n-2)} \ldots \times {(n-m+1)}}{1 \times 2 \times \ldots \times m}

需要高精除,但是高精除代码长,复杂度也不低,所以需要更理想的方案。

由于组合数一定是整数,所以分子和分母一定可以约干净。

所以,我们可以约分掉分母,在把约分后的分子相乘,就能得到n \choose m,然后相加至total

计算代码

const int N = 400;
int total[N];
int gcd(int a, int b){
    if(b == 0) return a;
    return gcd(b, a % b);
}
void cc(int n, int m){
    if(n < m) return;
    int a[N], b[N], i, j, x;
    for(i = m; i >= 1; i--){
        a[i] = n + i - m;
        b[i] = i;
    }
    for(i = 1; i <= m; i++){
        if(b[i] == 1) continue;
        for(j = m; j >= 1; j--){
            x=gcd(b[i], a[j]);
            b[i] /= x;
            a[j] /= x;
            if(b[i] == 1) break;
        }
    }
    memset(b, 0, sizeof b);
    b[1] = b[0] = 1;
    int g = 0;
    for(j = 1; j <= m; j++){
        g = 0;
        if(a[j] == 1) continue;
        for(i = 1;i <= b[0]; i++){
            b[i] = b[i] * a[j] + g;
            g = b[i] / 10;
            b[i] %= 10;
            if(i == b[0] && g != 0) b[0]++;
        }
    }
    total[0] = max(total[0], b[0]);
    for(int i = 1; i <= total[0]; i++){
        total[i] += b[i];
        total[i + 1] += total[i] / 10;
        total[i] %= 10;
    }
    if(total[total[0] + 1] != 0) total[0]++;
}

代码

#include<iostream>
#include<cstring>
using namespace std;
const int N = 400;
int total[N];
int gcd(int a, int b){
    if(b == 0) return a;
    return gcd(b, a % b);
}
void cc(int n, int m){
    if(n < m) return;
    int a[N], b[N], i, j, x;
    for(i = m; i >= 1; i--){
        a[i] = n + i - m;
        b[i] = i;
    }
    for(i = 1; i <= m; i++){
        if(b[i] == 1) continue;
        for(j = m; j >= 1; j--){
            x=gcd(b[i], a[j]);
            b[i] /= x;
            a[j] /= x;
            if(b[i] == 1) break;
        }
    }
    memset(b, 0, sizeof b);
    b[1] = b[0] = 1;
    int g = 0;
    for(j = 1; j <= m; j++){
        g = 0;
        if(a[j] == 1) continue;
        for(i = 1;i <= b[0]; i++){
            b[i] = b[i] * a[j] + g;
            g = b[i] / 10;
            b[i] %= 10;
            if(i == b[0] && g != 0) b[0]++;
        }
    }
    total[0] = max(total[0], b[0]);
    for(int i = 1; i <= total[0]; i++){
        total[i] += b[i];
        total[i + 1] += total[i] / 10;
        total[i] %= 10;
    }
    if(total[total[0] + 1] != 0) total[0]++;
}
int main(){
    int k, w, n, m, c, i;
    memset(total,0,sizeof total);
    cin >> k >> w;
    n = (1 << k) - 1; m = w / k; c = w % k;
    for(i = m; i >= 2; i--) cc(n, i);
    c = (1 << c) - 1;
    if(c >= 1 && n > m)
        for(i = 1; i <= c; i++) cc(n - i, m);
    for(i = total[0]; i >= 1; i--) cout << total[i];
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值