用Obsidian写Latex公式比手写还快,教程来了

作者分享了使用Obsidian进行考研复习的体验,卸载了MindMap插件,转而使用markmind提升笔记整理效果。推荐了Templater插件,通过快捷键配置能快速输入Latex公式,与Completr配合提高写作效率。另外介绍了ObsidianPandoc用于将Markdown转换为.tex格式,以及Admonition插件进行区块高亮和标注。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

这两天考试好多。。。过两天还有一门,暂时闲下来摆一会写点东西

因为今年就要考研了,可能这一年都不会更多少,因为确实没有多少时间搞这些东西,课业也挺多…

当然了如果说是不想使用Obsidian,这篇文章你可以不用(

在这里提及一下我之前的一篇文章一点Obsidian插件以及使用教程

其实用了四个月的Obsidian, 我的插件配置也更新了许多,另外在这篇文章里面对前面这一篇文章做一点补充,包括介绍一个配置好之后可以让你打Latex公式比手写还快的插件(但是这需要一定时间配置好)

首先是对前面这一篇文章的修改和补充(其实是我太懒懒得改文章)
首先因为MindMap插件自动生成的比较乱,所以用这个插件感觉不利于笔记整理,然后我就把它卸载了,改用markmind之后,相对来说整理效果还是好许多的

然后扔上一张图片来看看整理效果在这里插入图片描述
(其实应该被猜到了我是学力学的)


另外就是再多加上几个比较实用的插件:

1. Templater

Templater就是所谓配置好之后可以让你打Latex公式比手写都快的插件,在settings里面配置好Templater的模板文件夹,然后你就可以给不同的常用字符配置快捷键了在这里插入图片描述
使用方法是直接在Templater里面插入
你可以配置一组好用又好记的快捷键,比如使用alt键+s直接插入\sigma , 比如alt+d直接插入\delta,使用alt+shift+d插入\Delta, 使用首字母类似的就可以记住了

这里使用我按alt键时绑定的符号为例, 由于可以按alt,shift,ctrl等多种组合,就
可以定义多种多样的快捷键来输入Latex公式了, 下面这张图是我自定义的按alt键时绑定的Latex字符,其他的可以自己定义
在这里插入图片描述
这个插件和上边参考文章中的Completr配合起来,就可以实现高速打Latex公式了, 比如我写一个比较大的公式测试效果:

Latex公式测试

虽然这个公式写的可能比手写要慢,不过一般比较熟悉一点的公式打起来速度还是可以达到手写的,当然了敲快一点的话还是可以比手写快的

2. Obsidian Pandoc

简而言之这个就是差不多可以用Obsidian写论文的插件, 安装这个插件后
需要在pandoc官方网站 在windows安装pandoc保证pandoc能够被Obsidian识别

用这个可以把Obsdian的markdown格式直接导出为.tex格式其中注意把大概在第五行的documentclass部分更改为
\documentclass[UTF8]{ctexart}, 然后tex文件就可以正常运行了, 随便导出一页笔记为论文tex格式:
在这里插入图片描述

3. Admonition

这个插件用于实现笔记的区块高亮和重点标注比较有用,当然了也可以使用Highlighter添加不同形式的高亮,也可以使用Templater插入 <mark style="background: transparent; color: yellow">黄色字体</mark> 等等添加不同颜色的高亮文本


另外还有比较多的插件,比如背景可以用dynamic background插件然后搞一张不错的背景,也算是在写东西的时候一种放松吧

这一篇就到这里吧,之后估计要全面开鸽咯

<think>好的,我现在需要帮用户找到关于强化学习的手写笔记或模板,特别是PDF下载的资源。首先,用户提到的引用中有三个,分别是关于笔记结构、PyTorch手写体识别和强化学习基础的内容。其中引用3提到了蘑菇书第一章的强化学习基础,这可能是一个关键点。 首先,我应该检查用户提供的引用内容,看看是否有直接相关的资源。引用3提到了蘑菇书中的强化学习例子,可能这本书有相关的笔记或章节可供下载。但用户需要的是手写笔记模板或示例,可能需要更具体的资源。 接下来,用户可能需要结构化的笔记方法,引用1提到了分类、标签化和知识关联,这可能帮助用户组织强化学习的内容。或许可以建议用户参考这些方法来自行创建笔记,同时结合引用3中的例子。 然后,考虑到引用2是关于PyTorch的手写体识别,可能与强化学习关联不大,但用户可能需要结合代码示例的笔记,所以或许可以建议在笔记中加入代码块,如引用2中的实战示例。 用户可能需要具体的PDF资源,但站内引用中没有直接提供。这时候可能需要建议用户查找蘑菇书的相关章节,或者推荐外部资源如GitHub、arXiv等,但需要遵守不提供外部链接的规定。因此,可以建议搜索关键词,如“蘑菇书 强化学习 笔记 PDF”或者“强化学习手写笔记模板”。 另外,用户可能需要笔记模板的结构建议,比如分基础概念、算法、代码实现等部分,引用1中的分类方法可以应用到这里。同时,引用3中的MountainCar示例可以作为实战部分的内容,用户可以在笔记中加入这样的案例。 最后,需要确保回答符合格式要求,使用中文,正确应用LaTeX,生成相关问题,并添加引用标识。可能需要提醒用户注意版权问题,确保下载资源的合法性。</think>关于强化学习手写笔记资源的获取与整理,这里提供系统性解决方案: ### 一、结构化笔记构建方法 1. **知识分类框架**建议采用: $$知识模块 = 基础理论 + 算法推导 + 实践案例$$ 引用中的蘑菇书案例可作为实践模块模板[^3] 2. **数学公式规范**: - 策略梯度定理应作:$\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(a|s) Q^\pi(s,a)]$ - Bellman方程格式:$$V^\pi(s) = \mathbb{E}\left[ \sum_{k=0}^\infty \gamma^k r_{t+k+1} \mid s_t = s \right]$$ 3. **代码整合技巧**: ```python # 参照引用[2]的PyTorch实现模式 class QNetwork(nn.Module): def __init__(self, state_size, action_size): super(QNetwork, self).__init__() self.fc1 = nn.Linear(state_size, 64) self.fc2 = nn.Linear(64, action_size) ``` ### 二、资源获取路径 1. **学术平台检索**: - arXiv搜索:"handwritten notes reinforcement learning filetype:pdf" - 大学开放课程(如MIT 6.S191)常附带可下载的笔记模板 2. **知识管理工具**: - 使用Obsidian/Notion构建数字笔记库,参照引用[1]的标签化方法[^1] - 建立Mermaid流程图表达算法关系: ```mermaid graph TD A[智能体] --> B{环境交互} B --> C[状态观测] C --> D[奖励计算] ``` ### 三、版权注意事项 - 蘑菇书等开源资料可关注GitHub官方仓库的Release页面 - IEEE/ACM数字图书馆提供合规下载渠道
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序菜鸟一只

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值