1 堆的定义
一棵完全二叉树的数组对象。
2 堆的特点
- 是完全二叉树;
- 用数组实现:将二叉树的结点按层级顺序放入数组,根节点在位置1,它的子节点在位置2和3,子节点的子节点在4、5、6、7,以此类推;
- 由2可知:如果一个结点位置为k,则其父节点位置为k/2,其两个子节点的位置分别为2k和2k+1。因此,从a[k]向上一层,令k=k/2,向下一层令k=2k或2k+1;
- 每个结点大于等于它的两个子结点。
3 Java实现
public class Heap<T extends Comparable<T>> {
//存储堆中的元素
private T[] items;
//记录堆中元素的个数
private int N;
public Heap(int capacity) {
this.items= (T[])new Comparable[capacity+1];
}
//往堆中插入一个元素
public void insert(T t) {
items[++N] = t;
swim(N);
}
//使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置
private void swim(int k) {
//通过循环,不断的比较当前结点的值和其父结点的值,如果发现父结点的值比当前结点的值小,则交换位置
while (k > 1) {
//比较当前结点和其父结点
if (less(k/2, k)){
exch(k/2, k);
} else {
break;
}
k = k/2;
}
}
//删除堆中最大的元素,并返回这个最大元素
public T delMax(){
T max = items[1];
//交换索引1处的元素和最大索引处的元素,让最大索引处的元素变为临时根结点
exch(1, N);
//最大索引处的元素删除掉
items[N] = null;
//元素个数-1
N--;
//通过下沉调整堆,让堆重新有序
sink(1);
return max;
}
//使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置
private void sink(int k){
//通过循环不断对比当前k结点和其左子结点2*k以及右子结点2k+1处中较大值的元素大小,如果当前结点小,则需要交换位置
while(2*k <= N){
//获取当前结点的子结点中的较大结点
int max;//记录较大结点所在的索引
if (2*k+1 <= N){
if (less(2*k,2*k+1)){
max=2*k+1;
}else{
max=2*k;
}
}else {
max = 2 * k;
}
//比较当前结点和较大结点的值
if (!less(k, max)){
break;
}
//交换k索引处的值和max索引处的值
exch(k, max);
//变换k的值
k = max;
}
}
//判断堆中索引i处的元素是否小于索引j处的元素
private boolean less(int i,int j){
return items[i].compareTo(items[j]) < 0;
}
//交换堆中i索引和j索引处的值
private void exch(int i, int j){
T temp = items[i];
items[i] = items[j];
items[j] = temp;
}
public static void main(String[] args) {
Heap<String> heap = new Heap<>(20);
heap.insert("A");
heap.insert("B");
heap.insert("C");
heap.insert("D");
heap.insert("E");
heap.insert("F");
heap.insert("G");
String del;
while((del = heap.delMax()) != null){
System.out.print(del+",");
}
}
}
G,F,E,D,C,B,A,