NOIP2017解题报告

7 篇文章 0 订阅
6 篇文章 0 订阅

T1小凯的疑惑

根据裴蜀定理,一定存在ax+by==k的解(gcd(a,b)==1)
要求的是 ax+by==k ,且x<0||y<0,的最大解
那么一定有 ax+by==k+1 一定是组合法解
考虑两边同时减 ax+by==1
得到 a(xx)+b(yy)==1
那么可以将x减小,也可以将y减小
令x”,y”为x为最小非负整数解时, ax"+by"==1 的一组解
令x’,y’为y为最小非负整数解时, ax+by==1 的一组解
要求最大的解k,一定有 ax+by==k+1
且x < x” ,y < y’
那么答案就是 a(x"1)+b(y1)1

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
inline void exgcd(ll a,ll b,ll &d,ll &x,ll &y){
    if(!b){
        d=a;
        x=1;
        y=0;
        return ;
    }
    else {
        exgcd(b,a%b,d,y,x);
        y-=(a/b)*x;
    }
}
int main(){
    freopen("2017math.in","r",stdin);
    freopen("2017math.out","w",stdout);
    ll a,b;
    scanf("%lld %lld",&a,&b);
    ll d,x,y;
    exgcd(a,b,d,x,y);
    ll xx=a/d,yy=b/d;
    x=(x%yy+yy)%yy;
    y=(y%xx+xx)%xx;
    printf("%lld\n",(long long)a*(x-1)+(long long)b*(y-1)-1);
return 0;
}

T2时间复杂度

手写一个栈模拟即可

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
char A[1010];
char B[1010];
int vis[30];
int s[1010];
int pp[1010];
int bl[1010];
inline void init(){
    memset(vis,0,sizeof(vis));
    memset(s,0,sizeof(s));
    memset(pp,0,sizeof(pp));
    memset(bl,0,sizeof(bl));
}
int main(){
    freopen("2017complexity.in","r",stdin);
    freopen("2017complexity.out","w",stdout);
    int T;
    scanf("%d",&T);
    int L;
    while(T--){
        init();
        scanf("%d",&L);
        //printf("%d\n",L);
        int timt=0;
        scanf("%s",A);
        int len=strlen(A);
        int pcnt=0;
        for(int i=0;i<len;){
            if(i!=0&&A[i-1]!='^'&&A[i]>='0'&&A[i]<='9'){
                int x=0;
                while(i<len&&A[i]>='0'&&A[i]<='9'){
                    x=x*10+A[i]-'0';
                    i++;
                }
                timt=x;
            }
            else if(i!=0&&A[i-1]=='^'&&A[i]>='0'&&A[i]<='9'){
                int x=0;
                while(i<len&&A[i]>='0'&&A[i]<='9'){
                    x=x*10+A[i]-'0';
                    i++;
                }
                pcnt=x;
            }
            else i++;
        }
        scanf("\n");
        int snum=0;
        int eok=0;
        int pclt=0;
        int blk=0;
        int pcltma=0;
        for(int i=1;i<=L;i++){
            gets(B);
            int le=strlen(B);
            if(B[0]=='E'){
                if(!snum){
                    eok=1;
                    continue;
                }
                else {
                    vis[s[snum]]=0;
                    if(pp[snum]){
                        pclt--;
                        pp[snum]=0;
                    }
                    if(bl[snum]){
                        blk--;
                        bl[snum]=0;
                    }
                    snum--;
                }
            }
            else if(B[0]=='F'){
                int hav_x=0,hav_a=0,hav_b=0;
                int a=0,b=0;
                int aen=0,ben=0;
                for(int j=1;j<le;j++){
                    if(B[j]>='a'&&B[j]<='z'){
                        if(!hav_x){
                            hav_x=1;
                            if(vis[B[j]-'a'])
                                eok=1;
                            vis[B[j]-'a']=1;
                            s[++snum]=B[j]-'a';
                        }
                        else if(!hav_a){
                            hav_a=1;
                            aen=1;
                        }
                        else if(!hav_b){
                            hav_b=1;
                            ben=1;
                        }
                    }
                    else if(B[j]>='0'&&B[j]<='9'){
                        if(!hav_a){
                            hav_a=1;
                            while(j<le&&B[j]>='0'&&B[j]<='9'){
                                a=a*10+B[j]-'0';
                                j++;
                            }
                            j--;
                        }
                        else if(!hav_b){
                            hav_b=1;
                            while(j<le&&B[j]>='0'&&B[j]<='9'){
                                b=b*10+B[j]-'0';
                                j++;
                            }
                            j--;
                        }
                    }
                }
                if(!aen&&ben&&!blk){
                    pclt++;
                    pp[snum]=1;
                }
                if(!aen&&!ben&&a>b)
                    blk++,bl[snum]=1;
                if(aen&&!ben)
                    blk++,bl[snum]=1;
            }
            pcltma=max(pcltma,pclt);
        }
        if(snum)
            eok=1;
        if(eok)
            puts("ERR");
        else if(pcnt){
            if(pcltma==pcnt)
                puts("Yes");
            else puts("No");
        }
        else {
            if(!pclt)
                puts("Yes");
            else puts("No");
        }
    }
return 0;
}

T3逛公园

令f[i][l]为到第i个点,比从第1个点到第i个点最短路长l的方案数
容易写出dp方程
f[i][l]=jf[j][l+dis[i]dis[j]w[j][i]]
0l+dis[i]dis[j]w[j][i]k
但这个dp是有后效性的
将f[i][l]拆成k+1个点,再建边跑topo-sort或记忆化搜索
用tarjan判断是否有0环
时间复杂度O(n*k)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
using namespace std;
const int maxn=100000+10;
vector<int>A[maxn];
vector<int>C[maxn];
vector<int>B[maxn];
vector<int>D[maxn];
vector<int>Z[maxn];
int p,n;
int dfn[maxn],low[maxn],ins[maxn],s[maxn];
int f[maxn][60];
int inz[maxn];
int top;
int dis[maxn],vis[maxn],rdis[maxn];
int add[maxn][60];
queue<int>q;
int ind;
int k;
inline void tarjan(int x){
    dfn[x]=low[x]=++ind;
    s[++top]=x;
    ins[x]=1;
    for(int i=0;i<Z[x].size();i++){
        int u=Z[x][i];
        if(!dfn[u]){
            tarjan(u);
            low[x]=min(low[x],low[u]);
        }
        else if(ins[u])
            low[x]=min(low[x],low[u]);
    }
    if(dfn[x]==low[x]){
        int t=top,cnt=0;
        while(s[t]!=x)
            cnt++,t--;
        cnt++;
        while(s[top]!=x){
            if(cnt>1)
                inz[s[top]]=1;
            ins[s[top]]=0;
            top--;
        }
        if(cnt>1)
            inz[s[top]]=1;
        ins[s[top]]=0;
        top--;
    }
}
inline void cle(){
    top=ind=0;
    memset(f,0,sizeof(f));
    memset(inz,0,sizeof(inz));
    memset(add,0,sizeof(add));
    memset(dfn,0,sizeof(dfn));
    for(int i=1;i<=n;i++){
        A[i].clear();
        B[i].clear();
        C[i].clear();
        D[i].clear();
        Z[i].clear();
    }
}
inline int fuc(int x,int d){
    if(add[x][d])
        return f[x][d];
    add[x][d]=1;
    if(x==1&&d==0)
        return f[x][d]=1;
    for(int i=0;i<B[x].size();i++){
        int u=B[x][i];
        int t=dis[x]+d-D[x][i]-dis[u];
        if(t>k||t<0)
            continue;
        f[x][d]+=fuc(u,t);
        if(f[x][d]>=p)
            f[x][d]-=p;
    }
    return f[x][d];
}
int main(){
    freopen("2017park.in","r",stdin);
    freopen("2017park.out","w",stdout);
    int T;
    scanf("%d",&T);
    while(T--){
        int m;
        scanf("%d %d %d %d",&n,&m,&k,&p);
        cle();
        int x,y,z;
        for(int i=1;i<=m;i++){
            scanf("%d %d %d",&x,&y,&z);
            //printf("%d %d %d\n",x,y,z);
            A[x].push_back(y);
            C[x].push_back(z);
            B[y].push_back(x);
            D[y].push_back(z);
            if(!z)
                Z[x].push_back(y);
        }
        for(int i=1;i<=n;i++)
            if(!dfn[i])
                tarjan(i);
        memset(dis,127/2,sizeof(dis));
        dis[1]=0;
        vis[1]=1;
        q.push(1);
        while(!q.empty()){
            x=q.front();
            q.pop();
            for(int i=0;i<A[x].size();i++){
                int u=A[x][i];
                if(dis[u]>dis[x]+C[x][i]){
                    dis[u]=dis[x]+C[x][i];
                    if(!vis[u]){
                        vis[u]=1;
                        q.push(u);
                    }
                }
            }
            vis[x]=0;
        }
        memset(rdis,127/2,sizeof(rdis));
        rdis[n]=0;
        vis[n]=1;
        q.push(n);
        while(!q.empty()){
            x=q.front();
            q.pop();
            for(int i=0;i<B[x].size();i++){
                int u=B[x][i];
                if(rdis[u]>rdis[x]+D[x][i]){
                    rdis[u]=rdis[x]+D[x][i];
                    if(!vis[u]){
                        vis[u]=1;
                        q.push(u);
                    }
                }
            }
            vis[x]=0;
        }
        int ok=0;
        if(n==1){
            puts("0");
            continue;
        }
        for(int i=1;i<=n;i++)
            if(dis[i]+rdis[i]<=dis[n]+k&&inz[i]){
                ok=1;
                break;
            }
        if(ok){
            puts("-1");
            continue;
        }
        int ans=0;
        for(int d=0;d<=k;d++){
            ans+=fuc(n,d);
            if(ans>=p)
                ans-=p;
        }
        printf("%d\n",ans);
    }
return 0;
}

T4奶酪

直接暴力建边跑bfs,并查集什么的
时间复杂度O(n)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
using namespace std;
const int maxn=1000+10;
double x[maxn],y[maxn],z[maxn];
int vis[maxn];
int to[maxn][maxn];
int top[maxn];
queue<int>q;
inline double dist(int i,int j){
    return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])+(z[i]-z[j])*(z[i]-z[j]));
}
int main(){
    freopen("2017cheese.in","r",stdin);
    freopen("2017cheese.out","w",stdout);
    int T;
    scanf("%d",&T);
    while(T--){
        memset(to,0,sizeof(to));
        memset(vis,0,sizeof(vis));
        int n;
        double h,r;
        scanf("%d %lf %lf",&n,&h,&r);
        for(int i=1;i<=n;i++)
            scanf("%lf %lf %lf",&x[i],&y[i],&z[i]);
        for(int i=1;i<=n;i++)
            for(int j=i+1;j<=n;j++){
                if(dist(i,j)<=2*r)
                    to[i][j]=to[j][i]=1;
            }
        for(int i=1;i<=n;i++)
            if(z[i]-r<=0){
                q.push(i);
                vis[i]=1;
            }
        while(!q.empty()){
            int x=q.front();
            q.pop();
            for(int i=1;i<=n;i++)
                if(to[x][i]&&!vis[i]){
                    vis[i]=1;
                    q.push(i);
                }
        }
        int ok=0;
        for(int i=1;i<=n;i++)
            if(z[i]+r>=h&&vis[i])
                ok=1;
        if(ok)
            puts("Yes");
        else puts("No");
    }
return 0;
}

T5宝藏

状压dp
令f[i]为状态为i时,最小代价
令dep[i][j]为状态为i时,第j个点的深度
f[i(1<<(k1))]=min(f[i]+w[u][k])
i&(1<<(u-1))
枚举子集转移O(3^n)
枚举根时间复杂度O(n),枚举用哪个点转移O(n)
时间复杂度O(3^n*n^2)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
const int maxn=(1<<12)+10;
int dep[maxn][13];
int f[maxn];
vector<int>A[13];
vector<int>C[13];
int n;
int ans=0x7fffffff;
inline void work(int x){
    memset(f,127/2,sizeof(f));
    f[1<<(x-1)]=0;
    memset(dep[1<<(x-1)],0,sizeof(dep[1<<(x-1)]));
    dep[1<<(x-1)][x]=1;
    int top=(1<<n);
    for(int i=0;i<top;i++){
        if(f[i]==f[top])
            continue;
        for(int j=1;j<=n;j++){
            if(i&(1<<(j-1)))
                continue;
            for(int k=0;k<A[j].size();k++){
                int u=A[j][k];
                if(i&(1<<(u-1))){
                    if(f[i|(1<<(j-1))]>f[i]+dep[i][u]*C[j][k]){
                        f[i|(1<<(j-1))]=f[i]+dep[i][u]*C[j][k];
                        for(int l=1;l<=n;l++)
                            dep[i|(1<<(j-1))][l]=dep[i][l];
                        dep[i|(1<<(j-1))][j]=dep[i][u]+1;
                    }
                }
            }
        }
    }
    ans=min(ans,f[top-1]);
}
int main(){
    freopen("2017treasure.in","r",stdin);
    freopen("2017treasure.out","w",stdout);
    int m;
    scanf("%d %d",&n,&m);
    int x,y,z;
    for(int i=1;i<=m;i++){
        scanf("%d %d %d",&x,&y,&z);
        A[x].push_back(y);
        C[x].push_back(z);
        A[y].push_back(x);
        C[y].push_back(z);
    }
    for(int i=1;i<=n;i++)
        work(i);
    printf("%d\n",ans);
return 0;
}

T6列队

考虑每行其实是一个等差数列
最后一列也是个等差数列
每次操作相当于把一个等差数列分裂成最多两个公差相等的等差数列
然后再把取出的元素放到最后一列的末端
对于”向前看齐”操作也是一样的,不过是把取出的元素放到了该行的等差数列的末端
那么最多有O(3*q+n+1)个等差数列
空间复杂度O(n)
可以用平衡树维护插入删除
时间复杂度O(qlogn)

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=300000+10;
typedef long long ll;
int tr[maxn*8][2];
int size[maxn*8];
ll fr[maxn*8];
int len[maxn*8];
int fa[maxn*8];
int tot=0;
int root[maxn];
inline void pushup(int x){
    int l=tr[x][0],r=tr[x][1];
    size[x]=size[l]+size[r]+len[x];
}
inline void rotate(int x,int &k){
    int y=fa[x],z=fa[y];
    int l=tr[y][1]==x;
    int r=l^1;
    if(y==k)
        k=x;
    else tr[z][tr[z][1]==y]=x;
    fa[y]=x;
    fa[x]=z;
    fa[tr[x][r]]=y;
    tr[y][l]=tr[x][r];
    tr[x][r]=y;
    pushup(y);
    pushup(x);
}
inline void splay(int x,int &k){
    int y,z;
    while(x!=k){
        y=fa[x],z=fa[y];
        if(y!=k){
            if((tr[z][1]==y)^(tr[y][1]==x))
                rotate(x,k);
            else rotate(y,k);
        }
        rotate(x,k);
    }
}
inline int find(int x,int k,int &num){
    int l=tr[x][0],r=tr[x][1];
    if(size[l]+1<=k&&size[l]+len[x]>=k){
        num=k-size[l];
        return x;
    }
    else if(size[l]>=k)
        return find(l,k,num);
    else return find(r,k-size[l]-len[x],num);
}
int main(){
    freopen("2017phalanx.in","r",stdin);
    freopen("2017phalanx.out","w",stdout);
    int n,m,q;
    scanf("%d %d %d",&n,&m,&q);
    for(int i=1;i<=n;i++){
        root[i]=++tot;
        size[tot]=m+1;
        fr[tot]=1ll*(i-1)*m+1;
        len[tot]=m-1;
        int u=tot;
        tr[u][0]=++tot;
        fa[tot]=root[i];
        len[tot]=size[tot]=1;
        tr[u][1]=++tot;
        fa[tot]=root[i];
        len[tot]=size[tot]=1;
    }
    root[n+1]=++tot;
    size[tot]=n+2;
    fr[tot]=m;
    len[tot]=n;
    int u=tot;
    tr[u][0]=++tot;
    fa[tot]=root[n+1];
    len[tot]=size[tot]=1;
    tr[u][1]=++tot;
    fa[tot]=root[n+1];
    len[tot]=size[tot]=1;
    int x,y;
    while(q--){
        scanf("%d %d",&x,&y);
        long long id;
        if(y!=m){
            int u;
            int t=find(root[x],y+1,u);
            printf("%lld\n",id=(long long)u-1+fr[t]);
            int nu;
            int p=find(root[x],y-u+1,nu);
            splay(p,root[x]);
            p=find(root[x],len[t]-u+y+2,nu);
            splay(p,tr[root[x]][1]);
            tr[p][0]=0;
            pushup(p);
            pushup(root[x]);
            int hvl=0;
            if(u!=1){
                hvl=1;
                tr[p][0]=++tot;
                fa[tot]=p;
                fr[tot]=fr[t];
                len[tot]=size[tot]=u-1;
                pushup(p);
            }
            if(u!=len[t]){
                if(hvl){
                    tr[tr[p][0]][1]=++tot;
                    fa[tot]=tr[p][0];
                    fr[tot]=u+fr[t];
                    len[tot]=size[tot]=len[t]-u;
                    pushup(tr[p][0]);
                    pushup(p);
                }
                else {
                    tr[p][0]=++tot;
                    fa[tot]=p;
                    fr[tot]=u+fr[t];
                    len[tot]=size[tot]=len[t]-u;
                    pushup(p);
                }
            }
            pushup(root[x]);
            t=find(root[n+1],x+1,u);
            p=find(root[x],m-1,nu);
            splay(p,root[x]);
            tr[tr[root[x]][1]][0]=++tot;
            fa[tot]=tr[root[x]][1];
            fr[tot]=fr[t]+(long long)(u-1)*m;
            len[tot]=size[tot]=1;
            p=find(root[n+1],x-u+1,nu);
            splay(p,root[n+1]);
            p=find(root[n+1],len[t]-u+x+2,nu);
            splay(p,tr[root[n+1]][1]);
            tr[p][0]=0;
            pushup(p);
            pushup(root[n+1]);
            hvl=0;
            if(u!=1){
                hvl=1;
                tr[p][0]=++tot;
                fa[tot]=p;
                fr[tot]=fr[t];
                len[tot]=size[tot]=u-1;
                pushup(p);
            }
            if(u!=len[t]){
                if(hvl){
                    tr[tr[p][0]][1]=++tot;
                    fa[tot]=tr[p][0];
                    fr[tot]=(long long)u*m+fr[t];
                    len[tot]=size[tot]=len[t]-u;
                    pushup(tr[p][0]);
                    pushup(p);
                }
                else {
                    tr[p][0]=++tot;
                    fa[tot]=p;
                    fr[tot]=(long long)u*m+fr[t];
                    len[tot]=size[tot]=len[t]-u;
                    pushup(p);
                }
            }
            pushup(root[n+1]);
        }
        else {
            int t,p,u,nu;
            t=find(root[n+1],x+1,u);
            printf("%lld\n",id=(long long)(u-1)*m+fr[t]);
            p=find(root[n+1],x-u+1,nu);
            splay(p,root[n+1]);
            p=find(root[n+1],len[t]-u+x+2,nu);
            splay(p,tr[root[n+1]][1]);
            tr[p][0]=0;
            pushup(p);
            int hvl=0;
            if(u!=1){
                hvl=1;
                tr[p][0]=++tot;
                fa[tot]=p;
                fr[tot]=fr[t];
                len[tot]=size[tot]=u-1;
                pushup(p);
            }
            if(u!=len[t]){
                if(hvl){
                    tr[tr[p][0]][1]=++tot;
                    fa[tot]=tr[p][0];
                    fr[tot]=(long long)u*m+fr[t];
                    len[tot]=size[tot]=len[t]-u;
                    pushup(tr[p][0]);
                    pushup(p);
                }
                else {
                    tr[p][0]=++tot;
                    fa[tot]=p;
                    fr[tot]=(long long)u*m+fr[t];
                    len[tot]=size[tot]=len[t]-u;
                    pushup(p);
                }
            }
            pushup(root[n+1]);
        }
        int tu;
        int l=find(root[n+1],n,tu);
        splay(l,root[n+1]);
        tr[tr[l][1]][0]=++tot;
        fa[tot]=tr[l][1];
        fr[tot]=id,len[tot]=size[tot]=1;
        pushup(tr[l][1]);
        pushup(l);
        splay(tot,root[n+1]);
    }
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值