Description
喜欢钻研问题的JS同学,最近又迷上了对加密方法的思考。一天,他突然想出了一种他认为是终极的加密办法
:把需要加密的信息排成一圈,显然,它们有很多种不同的读法。例如下图,可以读作:
JSOI07 SOI07J OI07JS I07JSO 07JSOI 7JSOI0把它们按照字符串的大小排序:07JSOI 7JSOI0 I07JSO JSOI07
OI07JS SOI07J读出最后一列字符:I0O7SJ,就是加密后的字符串(其实这个加密手段实在很容易破解,鉴于这是
突然想出来的,那就^^)。但是,如果想加密的字符串实在太长,你能写一个程序完成这个任务吗?
Input
输入文件包含一行,欲加密的字符串。注意字符串的内容不一定是字母、数字,也可以是符号等。
Output
输出一行,为加密后的字符串。
Sample Input
JSOI07
Sample Output
I0O7SJ
HINT
对于100%的数据字符串的长度不超过100000。
最小表示法
把字符串翻倍 再进行后缀排序
对我们有用的只是长度>=n的后缀
去掉不符合的后缀就是把字符串所有的读法进行排序
因为根据字典序的性质 除非后缀的前n个字符都相同 才会对答案有影响
但如果前n个字符全部相同 那么选哪个后缀都一样
所以不会有影响
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=200000+10;
int sa[maxn],x[maxn],y[maxn];
int c[maxn];
char A[maxn];
int n;
inline void get_sa(){
int *tp=x,*rnk=y;
n=strlen(A+1);
int m=300;
for(int i=0;i<=m;i++)
c[i]=0;
for(int i=1;i<=n;i++)
tp[i]=(int)A[i],rnk[i]=(int)A[i];
for(int i=1;i<=n;i++)
c[tp[i]]++;
for(int i=1;i<=m;i++)
c[i]+=c[i-1];
for(int i=n;i>=1;i--)
sa[c[tp[i]]--]=i;
for(int j=1;j<=n;j<<=1){
int p=0;
for(int i=n-j+1;i<=n;i++)
tp[++p]=i;
for(int i=1;i<=n;i++)
if(sa[i]>j)
tp[++p]=sa[i]-j;
for(int i=0;i<=m;i++)
c[i]=0;
for(int i=1;i<=n;i++)
c[rnk[tp[i]]]++;
for(int i=1;i<=m;i++)
c[i]+=c[i-1];
for(int i=n;i>=1;i--)
sa[c[rnk[tp[i]]]--]=tp[i];
swap(rnk,tp);
p=1;
rnk[sa[1]]=1;
for(int i=2;i<=n;i++){
int O1=sa[i]+j>n?-1:tp[sa[i]+j];
int O2=sa[i-1]+j>n?-1:tp[sa[i-1]+j];
rnk[sa[i]]=(O1==O2&&tp[sa[i]]==tp[sa[i-1]])?p:++p;
}
m=p;
if(m>=n)
break;
}
}
int main(){
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
scanf("%s",A+1);
int N=strlen(A+1);
for(int i=1;i<=N;i++)
A[i+N]=A[i];
get_sa();
for(int i=1;i<=N*2;i++){
if(sa[i]<=N)
printf("%c",A[sa[i]+N-1]);
}
return 0;
}