1. 概述
- 特征值,特征值 λ \lambda λ,特征向量 x x x
- 微分方程 : d u d t = A u \frac{\mathrm{d}u}{\mathrm{d}t}=Au dtdu=Au
- 对称矩阵 : A T = A A^T=A AT=A
- 正定矩阵 : x T A x > 0 x^TAx >0 xTAx>0
- 矩阵相似 : A ∼ B ⇒ B = M − 1 A M A \sim B\Rightarrow B=M^{-1}AM A∼B⇒B=M−1AM
- SVD奇异值分解: A = U Σ V T A=U\Sigma V^T A=UΣVT
我们第六章主要是涉及到特征值和特征向量,我们通过行列式求解特征值
d
e
t
(
A
−
λ
I
)
=
0
⇒
λ
1
=
λ
2
=
⋯
=
λ
n
⇒
x
1
,
x
2
,
⋯
,
x
n
\begin{equation} \mathrm{det}{(A-\lambda I)}=0\Rightarrow \lambda_1=\lambda_2=\cdots=\lambda_n \Rightarrow x_1,x_2,\cdots,x_n \end{equation}
det(A−λI)=0⇒λ1=λ2=⋯=λn⇒x1,x2,⋯,xn
2. 微分方程1
2.1 求通解
假设我们有如下微分方程:
d
u
d
t
=
A
u
=
[
0
−
1
0
1
0
−
1
0
1
0
]
u
\begin{equation} \frac{\mathrm{d}u}{\mathrm{d}t}=Au= \begin{bmatrix} 0&-1&0\\\\ 1&0&-1\\\\ 0&1&0 \end{bmatrix}u \end{equation}
dtdu=Au=
010−1010−10
u
- 特征值求解:
d e t ( A − λ I ) = 0 ⇒ λ 1 = 0 , λ 2 = 2 i , λ 3 = − 2 i , \begin{equation} \mathrm{det}{(A-\lambda I)}=0\Rightarrow \lambda_1=0,\lambda_2=\sqrt{2}\mathrm{i},\lambda_3=-\sqrt{2}\mathrm{i}, \end{equation} det(A−λI)=0⇒λ1=0,λ2=2i,λ3=−2i, - 通解如下:
u ( t ) = c 1 e λ 1 t + c 2 e λ 2 t + c 3 e λ 3 t \begin{equation} u(t)=c_1\mathrm{e}^{\lambda_1t}+c_2\mathrm{e}^{\lambda_2t}+c_3\mathrm{e}^{\lambda_3t}\end{equation} u(t)=c1eλ1t+c2eλ2t+c3eλ3t
u ( t ) = c 1 + c 2 e 2 i t + c 3 e − 2 i t \begin{equation} u(t)=c_1+c_2\mathrm{e}^{\sqrt{2}\mathrm{i}t}+c_3\mathrm{e}^{-\sqrt{2}\mathrm{i}t} \end{equation} u(t)=c1+c2e2it+c3e−2it - 这里我们得到了一组复数根,那么我们发现 u ( t ) u(t) u(t)既不发散又不收敛,那么 u ( t ) u(t) u(t)是以什么周期来进行波动的呢?我们知道
- 复数欧拉方程如下:
e 2 π i = 1 ⇒ 2 k π i = 2 i t ⇒ t = 2 k π , k = 0 , 1 , 2 , ⋯ \mathrm{e}^{2\pi i}=1 \Rightarrow 2k\pi i=\sqrt{2}\mathrm{i}t \Rightarrow t=\sqrt{2}k\pi,k=0,1,2,\cdots e2πi=1⇒2kπi=2it⇒t=2kπ,k=0,1,2,⋯ - 也就是说当
t
=
2
k
π
,
k
=
0
,
1
,
2
,
⋯
t=\sqrt{2}k\pi,k=0,1,2,\cdots
t=2kπ,k=0,1,2,⋯时候,指数值为回归到1.所以得到如下公式:
u ( 2 k π ) = u ( 0 ) = c 1 + c 2 + c 3 , k = 0 , 1 , 2 , 3 , ⋯ \begin{equation} u(\sqrt{2}k\pi)=u(0)=c_1+c_2+c_3,k=0,1,2,3,\cdots \end{equation} u(2kπ)=u(0)=c1+c2+c3,k=0,1,2,3,⋯
2.2 小问题
- A是否奇异矩阵
因为矩阵A的特征值为0,所以可得如下方程:
A x = 0 ⋅ x = 0 ⇒ ∣ ∣ A ∣ ∣ = 0 ⇒ A 为奇异矩阵 \begin{equation} Ax=0\cdot x=0 \Rightarrow ||A||=0 \Rightarrow A为奇异矩阵 \end{equation} Ax=0⋅x=0⇒∣∣A∣∣=0⇒A为奇异矩阵 - 矩阵A满足什么条件的时候,特征向量两两正交?
A T A = A A T = I ⇒ A 的特征向量正交 \begin{equation} A^TA=AA^T=I \Rightarrow A的特征向量正交 \end{equation} ATA=AAT=I⇒A的特征向量正交 - 通过上述条件,有三种矩阵满足其特征向量相互正交:
对称矩阵,反对称矩阵,正交矩阵 \begin{equation} 对称矩阵,反对称矩阵,正交矩阵 \end{equation} 对称矩阵,反对称矩阵,正交矩阵 - 如果矩阵A可以对角化,
A
=
S
Λ
S
−
1
A=S\Lambda S^{-1}
A=SΛS−1,可以通解方程矩阵形式
u ( t ) = e A t u ( 0 ) , e A t = S e Λ t S − 1 \begin{equation} u(t)=\mathrm{e}^{At}u(0),\mathrm{e}^{At}=S\mathrm{e}^{\Lambda t}S^{-1} \end{equation} u(t)=eAtu(0),eAt=SeΛtS−1
e Λ t = [ e λ 1 e λ 2 ⋱ e λ 1 ] \begin{equation} \mathrm{e}^{\Lambda t}=\begin{bmatrix}\mathrm{e}^{\lambda_1}\\\\&\mathrm{e}^{\lambda_2}\\\\&&\ddots&&\\\\&&&\mathrm{e}^{\lambda_1}\end{bmatrix} \end{equation} eΛt= eλ1eλ2⋱eλ1
3. 微分方程2
现有矩阵A,给出部分特征值和对应的特征向量如下:
λ
1
=
0
,
x
1
=
[
1
1
1
]
;
λ
2
=
c
,
x
2
=
[
1
−
1
0
]
;
λ
3
=
2
,
x
3
=
[
1
1
−
2
]
;
\begin{equation} \lambda_1=0, x_1=\begin{bmatrix}1\\\\1\\\\1\end{bmatrix};\lambda_2=c, x_2=\begin{bmatrix}1\\\\-1\\\\0\end{bmatrix};\lambda_3=2, x_3=\begin{bmatrix}1\\\\1\\\\-2\end{bmatrix}; \end{equation}
λ1=0,x1=
111
;λ2=c,x2=
1−10
;λ3=2,x3=
11−2
;
- 当
c
满足什么条件下,矩阵3X3的A能够对角化?
根据定义,nxn矩阵A可对角化的充要条件是A有n个线性无关的特征向量。根据给定的特征向量,我们两两计算其值可得:
x 1 T x 2 = 0 , x 1 T x 3 = 0 , x 2 T x 3 = 0 ⇒ A 有 3 个相互正交的特征向量,所以 A 可对角化,所以 c 为任意值 \begin{equation} x_1^Tx_2=0,x_1^Tx_3=0,x_2^Tx_3=0\Rightarrow A有3个相互正交的特征向量,所以A可对角化,所以c为任意值 \end{equation} x1Tx2=0,x1Tx3=0,x2Tx3=0⇒A有3个相互正交的特征向量,所以A可对角化,所以c为任意值 - 当
c
满足什么条件下,矩阵3X3的A对称?
我们看到所有的特征向量正交,也就可以得到 S T S = I S^TS=I STS=I,因为特征向量线性无关,所以可得
A = S T Λ S , A T = S T Λ T S ⇒ Λ = Λ T \begin{equation} A=S^T\Lambda S,A^T=S^T\Lambda^T S\Rightarrow \Lambda=\Lambda^T \end{equation} A=STΛS,AT=STΛTS⇒Λ=ΛT
也就是说当c
为实数时,可以得矩阵A为对称矩阵。 - 当
c
满足什么条件下,矩阵3X3的A正定矩阵?
我们知道当c
为实数时,矩阵A是对称矩阵,正定矩阵是对称矩阵的特例,现在已经有 λ 1 = 0 , λ 2 = c , λ 3 = 2 \lambda_1=0,\lambda_2=c,\lambda_3=2 λ1=0,λ2=c,λ3=2,我们通过特征值大于零来判断是否是正定矩阵,现在 λ 1 = 0 \lambda_1=0 λ1=0,所以矩阵A最多是半正定矩阵,所以不存在c
使得矩阵A为正定矩阵。 - 当
c
满足什么条件下,矩阵3X3的A正半定矩阵?
因为 λ 1 = 0 , λ 2 = c , λ 3 = 2 \lambda_1=0,\lambda_2=c,\lambda_3=2 λ1=0,λ2=c,λ3=2,为了满足矩阵A为半正定矩阵,那么可以使得 c ≥ 0 c\geq 0 c≥0 - 当
c
满足什么条件下,3X3的矩阵A是马尔可夫矩阵?
如果矩阵A是马尔可夫矩阵,那么必须满足矩阵A的特征值中有一个为1,其他值均小于1,现在 λ 3 = 2 > 1 \lambda_3=2>1 λ3=2>1,所以矩阵A不可能是马尔可夫矩阵。 - 当
c
满足什么条件下, 1 2 ( A ) \frac{1}{2}(A) 21(A)是投影矩阵?
假设矩阵P是投影矩阵,那么可得 P = P 2 ⇒ λ 2 = λ ⇒ λ i = 0 , λ j = 1 P=P^2\Rightarrow \lambda^2=\lambda \Rightarrow \lambda_i=0,\lambda_j=1 P=P2⇒λ2=λ⇒λi=0,λj=1,所以必须满足矩阵P的特征值是0,1.那么 1 2 ( A ) \frac{1}{2}(A) 21(A)的特征值为
λ 11 = ( 0 ) / 2 = 0 , λ 22 = c 2 , λ 33 = 2 2 = 1 ⇒ c = 2 o r c = 0 \begin{equation} \lambda_{11}=(0)/2=0,\lambda_{22}=\frac{c}{2},\lambda_{33}=\frac{2}{2}=1\Rightarrow c=2 \quad or\quad c=0 \end{equation} λ11=(0)/2=0,λ22=2c,λ33=22=1⇒c=2orc=0
4. SVD奇异值分解
对于任意大小的矩阵A来说,可以进行SVD分解。
A
=
U
Σ
V
T
=
(
o
r
t
h
o
g
o
n
a
l
)
(
d
i
a
g
o
n
a
l
)
(
o
r
t
h
o
g
o
n
a
l
)
\begin{equation} A=U\Sigma V^T=(orthogonal)(diagonal)(orthogonal) \end{equation}
A=UΣVT=(orthogonal)(diagonal)(orthogonal)
- 正交矩阵U: m 行 m 列,该矩阵的每一个列向量都是 A A T AA^T AAT的特征向量
- 正交矩阵V: n 行 n 列,该矩阵的每一个列向量都是 A T A A^TA ATA的特征向量
- 对角阵 Σ \Sigma Σ: m行n列,将 A T A , A A T A^TA, AA^T ATA,AAT的特征值开根号,得到的就是该矩阵对角线上的元素,需要验证正负号。我们通常会用 A v i = σ i u i Av_i=\sigma_iu_i Avi=σiui来对正负号进行验证。
5. 对称矩阵
- 当矩阵A对称且相互正交,那么矩阵A的特征值是什么样的?
A T = A , A T A = I ⇒ λ 2 − 1 = 0 ⇒ λ = ± 1 \begin{equation} A^T=A,A^TA=I\Rightarrow \lambda^2-1=0\Rightarrow \lambda=\pm 1 \end{equation} AT=A,ATA=I⇒λ2−1=0⇒λ=±1 - 证明
1
2
(
A
+
I
)
\frac{1}{2}(A+I)
21(A+I)是投影矩阵?
因为矩阵A的特征值为 λ i = ± 1 \lambda_i=\pm 1 λi=±1,所以可得 1 2 ( A + I ) \frac{1}{2}(A+I) 21(A+I)的特征值为 1 2 ( λ i + 1 ) = 0 o r 1 \frac{1}{2}(\lambda_i+1)=0 \quad or \quad1 21(λi+1)=0or1,因为投影矩阵的特征值有1,0,所以满足此条件, 1 2 ( A + I ) \frac{1}{2}(A+I) 21(A+I)为投影矩阵。