【Python基础】第二十八课:分类模型之Logistic Regression

1.建立逻辑回归分析模型

from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression

iris = load_iris()
clf = LogisticRegression()
clf.fit(iris.data, iris.target)

clf.predict(iris.data)

和上篇博客【Python基础】第二十七课:分类模型之决策树中所做的一样,我们也可以绘制其决策边界:

2.代码地址

  1. LogisticRegression

想要获取最新文章推送或者私聊谈人生,请关注我的个人微信公众号:⬇️x-jeff的AI工坊⬇️

个人博客网站:https://shichaoxin.com

GitHub:https://github.com/x-jeff


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值