排列
题目背景:
分析:并查集 + 贪心 + 堆(优先队列)
和之前雅礼集训中的送你一朵圣诞树几乎是一样的,只是多了一些伪装,考虑那个非常绕的条件究竟是什么意思,对于一个j <= k,ap[j]一定不能等于p[k],也就是说,对于一个i,ai在p中出现的位置编号要小于i在p中出现的位置编号。相当于就是ai是i的父亲,所有点的父亲要比自己先被选中,那么所有的1 ~ n都有且仅有一个前驱,一共n条边,如果不成环的话,就只能形成一个根为0的树,所以直接判断一下是不是这么一棵树,就可以判断无解了,然后之后的最大化答案,对于全局最小的那个点,选择了它的父亲之后,就一定会选择它,所以我们直接合并它和它的父亲,那么对于一个点集i,记录ti为点集中的点的个数,Si为点集中的点的权值和,那么,对于两个点集,如果点集i优于点集j,那么ti *sj > tj * si,那么si /ti < sj / tj,那么直接并查集 + 堆,每次合并当前块和父亲的块就可以了。
时间复杂度O(nlogn)
Source:
/*
created by scarlyw
*/
#include <cstdio>
#include <string>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <cctype>
#include <vector>
#include <set>
#include <queue>
#include <ctime>
#include <bitset>
inline char read() {
static const int IN_LEN = 1024 * 1024;
static char buf[IN_LEN], *s, *t;
if (s == t) {
t = (s = buf) + fread(buf, 1, IN_LEN, stdin);
if (s == t) return -1;
}
return *s++;
}
///*
template<class T>
inline void R(T &x) {
static char c;
static bool iosig;
for (c = read(), iosig = false; !isdigit(c); c = read()) {
if (c == -1) return ;
if (c == '-') iosig = true;
}
for (x = 0; isdigit(c); c = read())
x = ((x << 2) + x << 1) + (c ^ '0');
if (iosig) x = -x;
}
//*/
const int OUT_LEN = 1024 * 1024;
char obuf[OUT_LEN];
char *oh = obuf;
inline void write_char(char c) {
if (oh == obuf + OUT_LEN) fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf;
*oh++ = c;
}
template<class T>
inline void W(T x) {
static int buf[30], cnt;
if (x == 0) write_char('0');
else {
if (x < 0) write_char('-'), x = -x;
for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 + 48;
while (cnt) write_char(buf[cnt--]);
}
}
inline void flush() {
fwrite(obuf, 1, oh - obuf, stdout), oh = obuf;
}
/*
template<class T>
inline void R(T &x) {
static char c;
static bool iosig;
for (c = getchar(), iosig = false; !isdigit(c); c = getchar())
if (c == '-') iosig = true;
for (x = 0; isdigit(c); c = getchar())
x = ((x << 2) + x << 1) + (c ^ '0');
if (iosig) x = -x;
}
//*/
const int MAXN = 500000 + 10;
int n;
int a[MAXN], w[MAXN], father[MAXN], fa[MAXN], size[MAXN];
long long sum[MAXN];
std::vector<int> edge[MAXN];
bool vis[MAXN];
struct node {
int id, size;
long long val;
inline node(int id, int size, long long val)
: id(id), size(size), val(val) {}
inline bool operator < (const node &a) const {
return val * a.size > a.val * size;
}
} ;
inline void add_edge(int x, int y) {
edge[x].push_back(y);
}
inline void read_in() {
R(n);
for (int i = 1; i <= n; ++i) R(a[i]), add_edge(a[i], i);
for (int i = 1; i <= n; ++i) R(w[i]);
}
inline void dfs(int cur, int fa) {
father[cur] = fa, vis[cur] = true;
for (int p = 0; p < edge[cur].size(); ++p) {
int v = edge[cur][p];
if (v == fa) continue ;
if (vis[v]) std::cout << "-1", exit(0);
dfs(v, cur);
}
}
inline int get_father(int x) {
return (x == fa[x]) ? (x) : (fa[x] = get_father(fa[x]));
}
std::priority_queue<node> q;
inline void solve() {
dfs(0, 0);
for (int i = 0; i <= n; ++i)
if (vis[i] == false) std::cout << "-1", exit(0);
long long ans = 0;
for (int i = 1; i <= n; ++i) {
fa[i] = i, size[i] = 1, sum[i] = w[i], ans += w[i];
q.push(node(i, 1, w[i]));
}
int cur;
while (!q.empty()) {
node temp = q.top();
q.pop(), cur = temp.id;
if (get_father(cur) != cur || size[cur] != temp.size) continue ;
int fa = get_father(father[cur]);
ans += (long long)size[fa] * sum[cur];
size[fa] += size[cur], sum[fa] += sum[cur], ::fa[cur] = fa;
if (fa != 0) q.push(node(fa, size[fa], sum[fa]));
}
std::cout << ans;
}
int main() {
freopen("perm.in", "r", stdin);
freopen("perm.out", "w", stdout);
read_in();
solve();
return 0;
}