染色
题目背景:
分析:结论题
这个结论题简直过于细节,而且因为卡掉算法的数据太难造,在下面拍几十万组都不一定WA得掉,但是交了就可能只有个10分左右了,大致说一下结论长相吧,首先如果存在奇环,显然是不行的,直接用两种颜色就可以卡掉了,然后我们可以发现,对于度数小于等于1的点,是并不影响的,只需要放和相连点不同的就行了,所以可以在一开始的时候直接缩掉,然后对于不同的连通块,显然是互不影响的,我们只需要讨论单个连通块,排除了上面情况后,剩下的就是一堆偶环随意嵌套连接了,考虑如果两个偶环只有1个公共点,我们可以找出公共点,让它所在的其中一个环上的相邻点的颜色集合为(B, C), (A, C),环上其他点为(A, B),另一个环上的相邻点为(A, B), (A, C),环上其他点为(B, C),然后这个公共点集合为(A, C),显然,第一个环上的相邻点中一定有一个为C,第二个环上的相邻点中一定有一个为A,这样就会凉掉,所以不存在只有一个公共点的两个偶环,那么现在剩下的情况就只有,一个大偶环,每一次选择相连点中没有的就可以了,两个度数为3的点,然后中间有三条不相交的路径,经验证这三天路径长度只能为2-2-偶数,直接判断一下就可以了.
综上就做完了,复杂度O(T(n + m))
Source:
/*
created by scarlyw
*/
#include <cstdio>
#include <string>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <cctype>
#include <vector>
#include <set>
#include <queue>
#include <ctime>
#include <bitset>
inline char read() {
static const int IN_LEN = 1024 * 1024;
static char buf[IN_LEN], *s, *t;
if (s == t) {
t = (s = buf) + fread(buf, 1, IN_LEN, stdin);
if (s == t) return -1;
}
return *s++;
}
// /*
template<class T>
inline void R(T &x) {
static char c;
static bool iosig;
for (c = read(), iosig = false; !isdigit(c); c = read()) {
if (c == -1) return ;
if (c == '-') iosig = true;
}
for (x = 0; isdigit(c); c = read())
x = ((x << 2) + x << 1) + (c ^ '0');
if (iosig) x = -x;
}
//*/
const int OUT_LEN = 1024 * 1024;
char obuf[OUT_LEN];
char *oh = obuf;
inline void write_char(char c) {
if (oh == obuf + OUT_LEN) fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf;
*oh++ = c;
}
template<class T>
inline void W(T x) {
static int buf[30], cnt;
if (x == 0) write_char('0');
else {
if (x < 0) write_char('-'), x = -x;
for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 + 48;
while (cnt) write_char(buf[cnt--]);
}
}
inline void flush() {
fwrite(obuf, 1, oh - obuf, stdout), oh = obuf;
}
/*
template<class T>
inline void R(T &x) {
static char c;
static bool iosig;
for (c = getchar(), iosig = false; !isdigit(c); c = getchar())
if (c == '-') iosig = true;
for (x = 0; isdigit(c); c = getchar())
x = ((x << 2) + x << 1) + (c ^ '0');
if (iosig) x = -x;
}
//*/
inline void write(bool flag) {
if (flag) write_char('Y'), write_char('E'),
write_char('S'), write_char('\n');
else write_char('N'), write_char('O'), write_char('\n');
}
const int MAXN = 20000 + 10;
int t, n, m, x, y;
int father[MAXN], d[MAXN];
std::vector<int> edge[MAXN], pos[MAXN];
std::queue<int> q;
bool vis[MAXN];
inline void add_edge(int x, int y) {
edge[x].push_back(y), edge[y].push_back(x), d[x]++, d[y]++;
}
inline int get_father(int x) {
return (father[x] == x) ? (x) : (father[x] = get_father(father[x]));
}
inline void merge(int x, int y) {
int fa1 = get_father(x), fa2 = get_father(y);
if (fa1 != fa2) father[fa1] = fa2;
}
inline bool check() {
for (int i = 1; i <= n; ++i)
if (get_father(i) == i) {
if (pos[i].size() == 1) continue ;
int cnt3 = 0, x = 0, y = 0;
for (int j = 0; j < pos[i].size(); ++j) {
int cur = pos[i][j];
if (d[cur] > 3) return false;
if (d[cur] == 3) cnt3++, (x == 0) ? (x = cur) : (y = cur);
}
if (cnt3 == 1 || cnt3 > 2) return false;
if (cnt3 == 0 && pos[i].size() % 2) return false;
if (cnt3 == 2) {
int cnt_num = 0;
if (pos[i].size() % 2 == 0) return false;
for (int j = 0; j < pos[i].size(); ++j) {
int cur = pos[i][j], cnt = 0;
for (int p = 0; p < edge[cur].size(); ++p)
if (edge[cur][p] == x || edge[cur][p] == y) cnt++;
cnt_num += (cnt == 2);
}
if (cnt_num < 2) return false;
}
}
return true;
}
inline void solve() {
R(n), R(m);
for (int i = 1; i <= n; ++i)
edge[i].clear(), pos[i].clear(), d[i] = 0, vis[i] = false;
for (int i = 1; i <= m; ++i) R(x), R(y), add_edge(x, y);
for (int i = 1; i <= n; ++i) if (d[i] == 1) q.push(i), vis[i] = true;
while (!q.empty()) {
int cur = q.front();
q.pop();
for (int p = 0; p < edge[cur].size(); ++p) {
int v = edge[cur][p];
if (!vis[v])
if (--d[v] == 1) q.push(v), vis[v] = true;
}
}
for (int i = 1; i <= n; ++i) if (!vis[i]) father[i] = i;
for (int i = 1; i <= n; ++i)
if (!vis[i])
for (int p = 0; p < edge[i].size(); ++p) {
int v = edge[i][p];
if (!vis[v]) merge(i, v);
}
for (int i = 1; i <= n; ++i)
if (!vis[i]) pos[get_father(i)].push_back(i);
write(check());
}
int main() {
//freopen("in.in", "r", stdin);
R(t);
while (t--) solve();
flush();
return 0;
}