NOI模拟(5.10) BJOID1T2 染色 (bzoj5295)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/scar_lyw/article/details/80288583

染色

题目背景:

5.10 模拟 BJOI2018D1T2

分析:结论题

 

这个结论题简直过于细节,而且因为卡掉算法的数据太难造,在下面拍几十万组都不一定WA得掉,但是交了就可能只有个10分左右了,大致说一下结论长相吧,首先如果存在奇环,显然是不行的,直接用两种颜色就可以卡掉了,然后我们可以发现,对于度数小于等于1的点,是并不影响的,只需要放和相连点不同的就行了,所以可以在一开始的时候直接缩掉,然后对于不同的连通块,显然是互不影响的,我们只需要讨论单个连通块,排除了上面情况后,剩下的就是一堆偶环随意嵌套连接了,考虑如果两个偶环只有1个公共点,我们可以找出公共点,让它所在的其中一个环上的相邻点的颜色集合为(B, C), (A, C),环上其他点为(A, B),另一个环上的相邻点为(A, B), (A, C),环上其他点为(B, C),然后这个公共点集合为(A, C),显然,第一个环上的相邻点中一定有一个为C,第二个环上的相邻点中一定有一个为A,这样就会凉掉,所以不存在只有一个公共点的两个偶环,那么现在剩下的情况就只有,一个大偶环,每一次选择相连点中没有的就可以了,两个度数为3的点,然后中间有三条不相交的路径,经验证这三天路径长度只能为2-2-偶数,直接判断一下就可以了.

综上就做完了,复杂度O(T(n + m))

 

Source:

 

/*
    created by scarlyw
*/
#include <cstdio>
#include <string>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <cctype>
#include <vector>
#include <set>
#include <queue>
#include <ctime>
#include <bitset>
  
inline char read() {
    static const int IN_LEN = 1024 * 1024;
    static char buf[IN_LEN], *s, *t;
    if (s == t) {
        t = (s = buf) + fread(buf, 1, IN_LEN, stdin);
        if (s == t) return -1;
    }
    return *s++;
}
  
// /*
template<class T>
inline void R(T &x) {
    static char c;
    static bool iosig;
    for (c = read(), iosig = false; !isdigit(c); c = read()) {
        if (c == -1) return ;
        if (c == '-') iosig = true; 
    }
    for (x = 0; isdigit(c); c = read()) 
        x = ((x << 2) + x << 1) + (c ^ '0');
    if (iosig) x = -x;
}
//*/
 
const int OUT_LEN = 1024 * 1024;
char obuf[OUT_LEN];
char *oh = obuf;
inline void write_char(char c) {
    if (oh == obuf + OUT_LEN) fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf;
    *oh++ = c;
}
 
 
template<class T>
inline void W(T x) {
    static int buf[30], cnt;
    if (x == 0) write_char('0');
    else {
        if (x < 0) write_char('-'), x = -x;
        for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 + 48;
        while (cnt) write_char(buf[cnt--]);
    }
}
 
inline void flush() {
    fwrite(obuf, 1, oh - obuf, stdout), oh = obuf;
}
  
/*
template<class T>
inline void R(T &x) {
    static char c;
    static bool iosig;
    for (c = getchar(), iosig = false; !isdigit(c); c = getchar())
        if (c == '-') iosig = true; 
    for (x = 0; isdigit(c); c = getchar()) 
        x = ((x << 2) + x << 1) + (c ^ '0');
    if (iosig) x = -x;
}
//*/
 
inline void write(bool flag) {
    if (flag) write_char('Y'), write_char('E'), 
        write_char('S'), write_char('\n');
    else write_char('N'), write_char('O'), write_char('\n');
}
 
const int MAXN = 20000 + 10;
 
int t, n, m, x, y;
int father[MAXN], d[MAXN];
std::vector<int> edge[MAXN], pos[MAXN];
std::queue<int> q;
bool vis[MAXN];
 
inline void add_edge(int x, int y) {
    edge[x].push_back(y), edge[y].push_back(x), d[x]++, d[y]++;
}
 
inline int get_father(int x) {
    return (father[x] == x) ? (x) : (father[x] = get_father(father[x]));
}
 
inline void merge(int x, int y) {
    int fa1 = get_father(x), fa2 = get_father(y);
    if (fa1 != fa2) father[fa1] = fa2;
}
 
inline bool check() {
    for (int i = 1; i <= n; ++i)
        if (get_father(i) == i) {
            if (pos[i].size() == 1) continue ;
            int cnt3 = 0, x = 0, y = 0;
            for (int j = 0; j < pos[i].size(); ++j) {
                int cur = pos[i][j];
                if (d[cur] > 3) return false;
                if (d[cur] == 3) cnt3++, (x == 0) ? (x = cur) : (y = cur);
            }
            if (cnt3 == 1 || cnt3 > 2) return false;
            if (cnt3 == 0 && pos[i].size() % 2) return false;
            if (cnt3 == 2) {
                int cnt_num = 0;
                if (pos[i].size() % 2 == 0) return false;
                for (int j = 0; j < pos[i].size(); ++j) {
                    int cur = pos[i][j], cnt = 0;
                    for (int p = 0; p < edge[cur].size(); ++p)
                        if (edge[cur][p] == x || edge[cur][p] == y) cnt++; 
                    cnt_num += (cnt == 2);
                }
                if (cnt_num < 2) return false;
            }
        }
    return true;
}
 
inline void solve() {
    R(n), R(m);
    for (int i = 1; i <= n; ++i) 
        edge[i].clear(), pos[i].clear(), d[i] = 0, vis[i] = false;
    for (int i = 1; i <= m; ++i) R(x), R(y), add_edge(x, y);
    for (int i = 1; i <= n; ++i) if (d[i] == 1) q.push(i), vis[i] = true;
    while (!q.empty()) {
        int cur = q.front();
        q.pop();
        for (int p = 0; p < edge[cur].size(); ++p) {
            int v = edge[cur][p];
            if (!vis[v])
                if (--d[v] == 1) q.push(v), vis[v] = true;
        } 
    }
    for (int i = 1; i <= n; ++i) if (!vis[i]) father[i] = i;
    for (int i = 1; i <= n; ++i)
        if (!vis[i])
            for (int p = 0; p < edge[i].size(); ++p) {
                int v = edge[i][p];
                if (!vis[v]) merge(i, v);
            }
    for (int i = 1; i <= n; ++i)
        if (!vis[i]) pos[get_father(i)].push_back(i);
    write(check());
}
int main() {
    //freopen("in.in", "r", stdin);
    R(t);
    while (t--) solve();
    flush();
    return 0;
}
阅读更多

没有更多推荐了,返回首页