傅里叶变换

傅里叶变换

傅里叶逆变换

f(t)=e^{-\beta t}的傅里叶变换

\pounds [f(t)]=\frac{1}{\beta +jw}

\pounds^{-} [F(w)]=\frac{1}{2\pi }\int_{+\infty }^{-\infty }\frac{1}{\beta +jw} e^{jwt}dw

 

线性性质

\pounds [f_{1}(t)]=F_{1}(w),\pounds [f_{2}(t)]=F_{2}(w)

\pounds [\alpha f_{1}(t)+\beta f_{2}(t) ]=\alpha F_{1}(w)+\beta F_{2}(w)

位移性质

1.\pounds [ f_{1}(t-t_{0})]=e^{-jwt_{0}}F(w)

2.\pounds [e^{\pm jwt_{0}} f(t)]=F(w\mp w_{0})

微分性质

如果f(t)(-\infty ,+\infty )连续且只有有限多个可去间断点,且当\left | t \right |\rightarrow +\infty时,

f(t)\rightarrow 0,则\pounds [{f}'(t)]=jw\pounds[f(t)]=jwF(w) \Leftrightarrow \pounds^{-}[wF(w)]={f}'(t)

\pounds [f^{n}(t)]=(jw)^{n}F(w)

\pounds [tf(t)]=j\frac{dF(w)}{dw}

\pounds [t^{n}f(t)]=\frac{1}{(-j)^{n}}\frac{d^{n}F(w)}{dw^{n}}

积分性质

g(t)=\int_{-\infty }^{t}f(t)dt,若\lim_{t->+\infty }g(t)=0,\pounds [g(t)]\frac{1}{jw}F(w)

卷积的定义:

已知f_{1}(t), f_{2}(t)两个函数,则\int_{+\infty }^{-\infty}f_{1}(\tau )f_{2}(t-\tau )d\tau称为f_{1}(t), f_{2}(t)的卷积。

记作f_{1}(t)*f_{2}(t)

注意:卷积是一种运算,类似加减乘除

\int_{+\infty }^{-\infty}f_{1}(\tau )f_{2}(t-\tau )d\tau=\int_{+\infty }^{-\infty}f_{1}(u )f_{2}(t-u )du

筛选性的应用

\delta (t)*f(t)=\int_{+\infty }^{-\infty}\delta (\tau )f(t-\tau )d\tau=f(t-\tau )|\tau=0=f(t)

f(t)*\delta (t)=\int_{+\infty }^{-\infty}f(\tau )\delta (t-\tau )d\tau=f(t-\tau )|\tau=t=f(t)

从上可以看出在卷积的应用,相当于单位1。

卷积的运算规则:

性质:

\frac{df_{1}(t)*f_{2}(t)}{dt}=\frac{df_{1}(t)}{dt}*f_{2}(t)=f_{1}(t)*\frac{df_{2}(t)}{dt}

例1:

f_{1}(t)=\left\{\begin{matrix} 0 \\ 1 \end{matrix}\right.\begin{matrix} t<0\\ t\geq 0 \end{matrix}f_{2}(t)=\left\{\begin{matrix} 0 \\ e^{-t} \end{matrix}\right.\begin{matrix} t<0\\ t\geq 0 \end{matrix}  求f_{1}(t)*f_{2}(t)的卷积

解:\int_{+\infty }^{-\infty}f_{1}(\tau )f_{2}(t-\tau )d\tau

f_{2}(t)=\left\{\begin{matrix} 0\\ e^{-(t-\tau )} \end{matrix}\right.\begin{matrix} \tau >t\\ \tau \leq t \end{matrix}

分成了三个区域

当t<0时,f_{1}(t)*f_{2}(t)=0

当t>0时f_{1}(t)*f_{2}(t)=\int_{-\infty }^{0}0\cdot e^{-(t-\tau )+\int_{0}^{t}1\cdot e^{-(t-\tau )+\int_{t}^{+\infty }0\cdot 1

=\int_{0}^{t}e^{-(t-\tau )}dt=1-e^{-t}

卷积定理

\pounds [u(t)]=\frac{1}{j\omega }+\pi \delta (\omega )

\pounds [e^{\pm j\omega _{0}t}f(t)]=F(w\mp \omega _{0})

帕塞瓦尔等式

\int_{-\infty }^{+\infty}f(t)^{2}=\frac{1}{2\pi }\int_{-\infty }^{+\infty}|F(w)|^{2}dw

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值