拉普拉斯变换的性质

线性性质:

\pounds [f_{1}(t)]=F_{1}(S)

\pounds [f_{2}(t)]=F_{2}(S)

\alpha\beta为常数

则有

\pounds [\alpha f_{1}(t)+\beta f_{2}(t)]=\alpha F_{1}(S)+\beta F_{2}(S)

拉普拉斯逆变换

\pounds^{-} [\alpha F_{1}(S)+\beta F_{2}(S)]=\alpha f_{1}(t)+\beta f_{2}(t)

要记忆的拉普拉斯变换

\pounds[e^{rt}]=\frac{1}{s-r}单位阶跃函数移动r

\pounds[sinRt]=\frac{R}{s^{2}+R^{2}}(sinRt的拉普拉斯逆变换)

\pounds[cosRt]=\int_{0 }^{+\infty}cosRt\cdot e^{-st}=\frac{S}{s^{2}+R^{2}}(cosRt的拉普拉斯逆变换)

\pounds[u(t)]=\int_{0 }^{+\infty}u(t)\cdot e^{-st}=\int_{0 }^{+\infty} e^{-st}dt=-\frac{1}{s}e^{-st}=\frac{1}{s}(单位阶跃函数的拉普拉斯逆变换)

\pounds[t^{m}]=\frac{m!}{s^{m+1}}(t的m次方的拉普拉斯逆变换)

拉普拉斯变换的例题

已知F(S)=\frac{1}{(s-a)(s-b)}\pounds ^{-}[F(S)]

解:

\pounds ^{-}[F(S)]=\pounds^{-1}\frac{1}{(s-a)(s-b)}=\pounds^{-1}\frac{1}{a-b}(\frac{1}{s-a}-\frac{1}{s-b})

=\frac{1}{a-b}\cdot e^{at}-\frac{1}{a-b}\cdot e^{bt}

2.位移性质

\pounds[e^{at}f(t)]=F(s-a)(f(t)函数乘e^{at}的拉普拉斯变换等于s-a的逆变换

例3

\pounds[e^{at}t^{m}]=\pounds[t^{m}]\mid s-a=\frac{m!}{s^{m+1}}\mid s-a=\frac{m!}{(s-a)^{m+1}}

性质3:微分性质

(1).\pounds[f{}'(t)]=sF(s)-f(0)(一次求导)

\pounds[f{}''(t)]=s^{2}F(s)-sf(0)-f{}'(0)(二次求导)

\pounds[f^{n}(t)]=s^{n}F(s)-s^{n-1}f(0)-s^{n-2}f{}'(0)-....-f^{n-1}(0)(n次求导)

(2).

\pounds[tf(t)]=-F{}'(s)(t乘f(t)函数的拉普拉斯变换等于拉普拉斯变换的求导)

\pounds[t^{n}f(t)]=(-1)^{n}F^{n}(s)

例 由\pounds[sinRt]计算  \pounds[cosRt]

解:

(cosRt){}'=-RsinRt(求导)

\pounds[(cosRt){}']=S\pounds[cosRt]-1=\pounds[-RsinRt](借助微分性质1,求解)

(1-\frac{R^{2}}{s^{2}+R^{2}})/s=\frac{s}{s^{2}+R^{2}}

例:求 \pounds[te^{-2t}sint]

解:

\pounds[te^{-2t}sint]=-\pounds[e^{-2t}sint]{}'=\frac{2}{(s+2)^{2}+4}

积分性质:

(1) 

\pounds[\int_{0}^{t}f(t)dt]=\frac{1}{s}F(s)

推广 到n阶

\pounds[\int_{0}^{t}\int_{0}^{t}\int_{0}^{t}...\int_{0}^{t}f(t)dt]=\frac{1}{s^{n}}F(s)

(2)

\pounds[\frac{f(t)}{t}]=\int_{+\infty }^{s}F(s)ds

例 

\pounds[\int_{0}^{t}sintdt]=\frac{1}{s}(\frac{1}{s^{2}+1})(用到上面的积分公式)

\pounds[\int_{0}^{t}sint\cdot e^{t}dt]=\frac{1}{s}(\frac{1}{(s-1)^{2}+1})

使用积分2性质

\pounds ^{-}[\frac{e^{-2t}sint}{t}]=\int_{s}^{\infty }\pounds[e^{-2t}sint]ds=\int_{s}^{\infty }\frac{1}{(s+2)^{2}+1}

5.延迟性质

若当t<0时,f(t)=0,则对t_{0}\geq 0,有\pounds [f(t-t_{0})]=e^{-st_{0}}F(s)

例 题

\pounds [u(t-t_{0})]=e^{-st_{0}}\pounds[u(t)]=\frac{1}{s}e^{-st_{0}}(单位阶跃函数的拉普拉斯变换等于\frac{1}{s}

拉普拉斯逆变换

\pounds [f(t)]=F(s),则有

1.逆变换的求解方法

留数定理

S_{1}S_{2}。。。。。S_{n}F(s)的所有奇点。且当S\rightarrow \infty时,F(S)\rightarrow 0

\frac{1}{2\pi j}\int_{\beta+j\infty}^{\beta-j\infty}F(s)e^{st}dt=\sum_{k=1}^{n}RES[F(s)e^{st},s_{k}]

一般地:\frac{A(s)}{B(s)}(单极点和多极点的公式)

S_{1}是一级极点,则RES[F(s)e^{st},s_{1}]=\frac{A(S_{1})e^{s_{1}t}}{B{}'(S_{1})}

S_{2}是m级极点,则RES[F(s)e^{st},s_{2}]=\frac{1}{(m-1)!}\lim_{s\rightarrow s_{2}}\frac{dm-1}{ds^{m-1}}(\frac{(A(S)e^{st})}{B(s)}(s-s_{2})^{m})

例 ,利用留数定理求\pounds^{-}[\frac{s}{s^{2}+1}]

其极点是S_{1}=j,S_{2}=-j

\pounds^{-}[\frac{s}{s^{2}+1}]=RES[\frac{s\cdot e^{st}}{s^{2}+1},j]+RES[\frac{s\cdot e^{st}}{s^{2}+1},-j]

=\frac{s\cdot e^{st}}{2s}\mid _{s=j}+\frac{s\cdot e^{st}}{2s}\mid _{s=-j}(分母求导,将极点代入)

=\frac{e^{jt}}{2}+\frac{e^{-jt}}{2}=cost(欧拉公式转换)

2.通过拆分部分来求解拉普拉斯逆变换

例 求\pounds^{-}\frac{1}{s(s-1)^{2}}

拆分部分分式(高数中有讲到)

\pounds^{-}\frac{1}{s(s-1)^{2}}=\frac{A}{S}+\frac{B}{S-1}+\frac{C}{(S-1)^{2}}

1=(s-1)^{2}A+(s-1)s*B+sC

比较同次幂系数

\left\{\begin{matrix} A+B=0\\ -2A-1B+C=0\\ A=1 \end{matrix}\right.

得A=1,B=-1.C=1

=\frac{1}{S}-\frac{1}{S-1}+\frac{1}{(S-1)^{2}}

所以 f(t)=1-e^{t}+te^{t}(可以查看上面公式)

通过卷积定理解拉普拉斯逆变换

\pounds ^{-}[F_{1}(s)+F_{2}(s)]=f_{1}(t)*f_{2}(t)

例 \pounds ^{-}[\frac{1}{s^{2}}\frac{1}{s+1}]

\pounds ^{-}[\frac{1}{s^{2}}\frac{1}{s+1}]=t*e^{-t}=-1+t+e^{-t}

                                                                                                                     

\frac{}{}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值