线性性质:
、为常数
则有
拉普拉斯逆变换
要记忆的拉普拉斯变换
单位阶跃函数移动r
(sinRt的拉普拉斯逆变换)
(cosRt的拉普拉斯逆变换)
(单位阶跃函数的拉普拉斯逆变换)
(t的m次方的拉普拉斯逆变换)
拉普拉斯变换的例题
已知求
解:
2.位移性质
(f(t)函数乘的拉普拉斯变换等于s-a的逆变换
例3
性质3:微分性质
(1).(一次求导)
(二次求导)
(n次求导)
(2).
(t乘f(t)函数的拉普拉斯变换等于拉普拉斯变换的求导)
例 由计算
解:
(求导)
(借助微分性质1,求解)
例:求
解:
积分性质:
(1)
推广 到n阶
(2)
例
(用到上面的积分公式)
使用积分2性质
5.延迟性质
若当t<0时,f(t)=0,则对,有
例 题
(单位阶跃函数的拉普拉斯变换等于
拉普拉斯逆变换
若,则有
1.逆变换的求解方法
留数定理
若、。。。。。是的所有奇点。且当时,F(S)
一般地:(单极点和多极点的公式)
是一级极点,则
是m级极点,则
例 ,利用留数定理求
其极点是,
(分母求导,将极点代入)
(欧拉公式转换)
2.通过拆分部分来求解拉普拉斯逆变换
例 求
拆分部分分式(高数中有讲到)
比较同次幂系数
得A=1,B=-1.C=1
所以 (可以查看上面公式)
通过卷积定理解拉普拉斯逆变换
例