题目地址:HDU 3061
多校中遇到的最小割的最大权闭合模型花了一上午时间终于看懂啦。
最大权闭合图就是将一些互相有依赖关系的点转换成图,闭合图指的是在图中的每一个点的后继点都是在图内的。
还要明白简单割的概念,就是指所有的割边都与源点或汇点相连。然后让源点与正权点相连,汇点与负权点相连,权值均为其绝对值,有依赖关系的点连一条有向边,如果a必须在b的基础上,那么就连一条a->b的有向边,权值为INF。最后用所有正权值得和减去最小割的值就是答案。
具体证明可看胡伯涛大牛的国家队集训论文《最小割模型在信息学竞赛中的应用》,论文很不错,我就是研究了一上午这篇论文弄懂的。
对于这题来说,应该算是一道此种类型的题目的入门题吧。将正权值得点与源点连边,负权值的点与汇点连边,权值均为绝对值。然后如果a在b的基础上,那就连一条a->b的有向边。然后用所有正权值得和减去最小割的值就是答案。(怎么感觉跟我上边说的一样。。。。)。
代码如下:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
int head[600], cnt, source, sink, nv;
int d[600], num[600], pre[600], cur[600];
struct node
{
int u, v, cap, next;
} edge[1000000];
void add(int u, int v, int cap)
{
edge[cnt].v=v;
edge[cnt].cap=cap;
edge[cnt].next=head[u];
head[u]=cnt++;
edge[cnt].v=u;
edge[cnt].cap=0;
edge[cnt].next=head[v];
head[v]=cnt++;
}
void bfs()
{
memset(d,-1,sizeof(d));
memset(num,0,sizeof(num));
queue<int>q;
q.push(sink);
d[sink]=0;
num[0]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u]; i!=-1; i=edge[i].next)
{
int v=edge[i].v;
if(d[v]==-1)
{
d[v]=d[u]+1;
num[d[v]]++;
q.push(v);
}
}
}
}
int isap()
{
memcpy(cur,head,sizeof(cur));
int flow=0, u=pre[source]=source, i;
bfs();
while(d[source]<nv)
{
if(u==sink)
{
int f=INF, pos;
for(i=source; i!=sink; i=edge[cur[i]].v)
{
if(f>edge[cur[i]].cap)
{
f=edge[cur[i]].cap;
pos=i;
}
}
for(i=source; i!=sink; i=edge[cur[i]].v)
{
edge[cur[i]].cap-=f;
edge[cur[i]^1].cap+=f;
}
flow+=f;
u=pos;
}
for(i=cur[u]; i!=-1; i=edge[i].next)
{
if(d[edge[i].v]+1==d[u]&&edge[i].cap)
{
break;
}
}
if(i!=-1)
{
cur[u]=i;
pre[edge[i].v]=u;
u=edge[i].v;
}
else
{
if(--num[d[u]]==0) break;
int mind=nv;
for(i=head[u]; i!=-1; i=edge[i].next)
{
if(mind>d[edge[i].v]&&edge[i].cap)
{
mind=d[edge[i].v];
cur[u]=i;
}
}
d[u]=mind+1;
num[d[u]]++;
u=pre[u];
}
}
return flow;
}
int main()
{
int n, m, a, b, sum, i;
while(scanf("%d%d",&n,&m)!=EOF)
{
sum=0;
memset(head,-1,sizeof(head));
cnt=0;
source=0;
sink=n+1;
nv=sink+1;
for(i=1; i<=n; i++)
{
scanf("%d",&a);
if(a>0)
{
add(source,i,a);
sum+=a;
}
else
{
add(i,sink,-a);
}
}
while(m--)
{
scanf("%d%d",&a,&b);
add(a,b,INF);
}
int ans=isap();
printf("%d\n",sum-ans);
}
return 0;
}