枚举+二分
因为每个元素的数据范围只有100,所以可以用枚举,对于血量用二分,然后判断结果是否可行。
代码如下:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>
using namespace std;
#define LL __int64
const int INF=0x3f3f3f3f;
int hy, ay, dy, hm, am, dm;
int bin_search(int a, int d)
{
if(d>=am) return hy;
int low=0, high=100000, mid, ans, c;
c=(hm+(a-dm-1))/(a-dm);
while(low<=high){
mid=low+high>>1;
if((mid+am-d-1)/(am-d)>c) {
ans=mid;
high=mid-1;
}
else
low=mid+1;
}
return ans>hy?ans:hy;
}
int main()
{
int h, a, d, i, j, min1, z;
while(scanf("%d%d%d",&hy,&ay,&dy)!=EOF) {
min1=INF;
scanf("%d%d%d",&hm,&am,&dm);
scanf("%d%d%d",&h,&a,&d);
for(i=0;i<=200;i++){
for(j=0;j<=200;j++){
if(ay+i<=dm)continue ;
z=bin_search(ay+i,dy+j);
min1=min(min1,(z-hy)*h+i*a+j*d);
}
}
printf("%d\n",min1);
}
}
B题: Strip
线段树+DP+二分(或窗口滑动)
这题做了好长时间。。。终于AC了。。
基本思路是DP。DP[i]表示从第一个到第i个的最小可划分的区间数。然后对于每个数,找到前面可到达的最左端L,对于L的查找可用二分法或者滑动窗口法进行枚举查找,判断当前枚举区间是否可行的时候用线段树对当前区间的最值进行查询。状态转移方程dp[i]=min(dp[L],....,dp[i-lenth])+1;然后对于dp[L]...dp[i-lenth]这段区间查最值可用另一棵线段树在logn的时间内查询。所以需要建两棵线段树。
话说最近换了代码风格。。看起来果然比以前的好看多了。。。
代码如下:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>
using namespace std;
#define LL __int64
const int INF=0x3f3f3f3f;
#define lson l, mid, rt<<1
#define rson mid+1, r, rt<<1|1
#define root 0, n, 1
int minv[400000], maxv[400000], a[110000], q_minv, q_maxv, mindp[400000], q_mindp, s, n;
void PushUp(int q, int rt)
{
if(q==1) {
minv[rt]=min(minv[rt<<1],minv[rt<<1|1]);
maxv[rt]=max(maxv[rt<<1],maxv[rt<<1|1]);
} else
mindp[rt]=min(mindp[rt<<1],mindp[rt<<1|1]);
}
void Update(int q, int p, int x, int l, int r, int rt)
{
if(l==r) {
if(q==1)
minv[rt]=maxv[rt]=x;
else mindp[rt]=x;
return ;
}
int mid=l+r>>1;
if(p<=mid) Update(q,p,x,lson);
else Update(q,p,x,rson);
PushUp(q,rt);
}
void Query(int q, int ll, int rr, int l, int r, int rt)
{
if(ll<=l&&rr>=r) {
if(q==1) {
q_minv=min(q_minv,minv[rt]);
q_maxv=max(q_maxv,maxv[rt]);
} else
q_mindp=min(q_mindp,mindp[rt]);
return ;
}
int mid=l+r>>1;
if(ll<=mid) Query(q,ll,rr,lson);
if(rr>mid) Query(q,ll,rr,rson);
}
int bin_search(int r)
{
int low=1, high=r, mid, ans=-1;
while(low<=high){
mid=low+high>>1;
q_maxv=-INF; q_minv=INF;
Query(1,mid,r,root);
//if(r==4)
//printf("%d %d\n",q_minv,q_maxv);
if(q_maxv-q_minv<=s) {
ans=mid;high=mid-1;
}
else low=mid+1;
}
return ans;
}
int main()
{
int lenth, ans, flag=0, l, i;
scanf("%d%d%d",&n,&s,&lenth);
for(i=1; i<=n; i++) {
scanf("%d",&a[i]);
}
memset(minv,INF,sizeof(minv));
memset(maxv,-1,sizeof(maxv));
memset(mindp,INF,sizeof(mindp));
Update(-1,0,0,root);
for(i=1;i<=n;i++){
Update(1,i,a[i],root);
l=bin_search(i);
if(l+lenth-1>i) continue ;
q_mindp=INF;
//printf("%d %d\n",l,i-lenth);
Query(-1,l-1,i-lenth,root);
if(q_mindp==INF) continue ;
Update(-1,i,q_mindp+1,root);
}
q_mindp=INF;
Query(-1,n,n,root);
printf("%d\n",q_mindp==INF?-1:q_mindp);
return 0;
}