题目地址:http://codeforces.com/contest/508/problem/D
第一次做输出欧拉路径的题。用dfs搜。
先对每个单词拆成前两个一组,后两个一组,然后对这两组加边并标号。比如“abc”,拆成“ab”和“bc”,然后对ab和bc所属的编号加边。然后深搜,并记录路径。需要注意的是,用前向星的话,需要再深搜的时候让前面走过的边后边不用再走,而且也要回溯的时候后边走过的前面的也不再走。简单处理下就行了。
代码如下:
#include <iostream>
#include <string.h>
#include <math.h>
#include <queue>
#include <algorithm>
#include <stdlib.h>
#include <map>
#include <set>
#include <stdio.h>
using namespace std;
#define LL __int64
#define pi acos(-1.0)
const int mod=1e9+7;
const int INF=0x3f3f3f3f;
const double eqs=1e-9;
int in[4000], out[4000], cnt, head[4000], tot, vis[210000], path[210000], top;
char st[210000][4];
int id[4000];
struct node {
int u, v, next;
} edge[410000];
void add(int u, int v)
{
edge[cnt].v=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
void dfs(int u, int id)
{
for(int i=head[u]; i!=-1; i=edge[i].next) {
if(!vis[i]) {
vis[i]=1;
head[u]=i;
dfs(edge[i].v,i);
}
i=head[u];
}
path[top++]=id;
}
int getid(char *s)
{
int ans=0,tmp;
for(int i=0;i<2;i++){
if(s[i]>='a'&&s[i]<='z') tmp=s[i]-'a';
else if(s[i]>='A'&&s[i]<='Z') tmp=s[i]-'A'+26;
else tmp=s[i]-'0'+52;
ans=ans*62+tmp;
}
return ans;
}
void init()
{
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
memset(head,-1,sizeof(head));
memset(vis,0,sizeof(vis));
memset(id,0,sizeof(id));
cnt=tot=0;
}
int main()
{
int n, i, flag, sum=0, pos, num1, num2;
char s1[3], s2[3];
scanf("%d",&n);
init();
getchar();
for(i=0; i<n; i++) {
gets(st[i]);
s1[0]=st[i][0];
s1[1]=st[i][1];
s1[2]='\0';
s2[0]=st[i][1];
s2[1]=st[i][2];
s2[2]='\0';
num1=getid(s1);
num2=getid(s2);
if(!id[num1]) {
id[num1]=++tot;
}
if(!id[num2]) {
id[num2]=++tot;
}
//printf("%d %d\n",q[s1],q[s2]);
add(id[num1],id[num2]);
out[id[num1]]++;
in[id[num2]]++;
}
//printf("%d\n",siz[1]);
flag=0;
pos=1;
for(i=1; i<=tot; i++) {
if(in[i]!=out[i]) {
sum++;
if(out[i]-in[i]==1) {
pos=i;
}
}
if(abs(in[i]-out[i])>1) {
flag=1;
break;
}
}
if(flag||sum>2) {
printf("NO\n");
} else {
top=0;
dfs(pos,-1);
//printf("%d\n",top);
if(top!=n+1) {
printf("NO");
} else {
printf("YES\n");
//printf("---%d\n",path[top-2]);
printf("%s",st[path[top-2]]);
for(i=top-3; i>=0; i--) {
printf("%c",st[path[i]][2]);
}
}
}
return 0;
}