谈到很多人眼中、心中的人工智能,通常都是人脸识别、聊天机器人等,认为人工智能可以等同于人机交互,其实这些只是应用场景而非“AI 之心”。
AI的核心支撑技术,是围绕机器学习(Auto Machine Learning)构建的技术框架。
关于AI的应用普及现状,天云大数据CEO雷涛指出,“AI民主化的核心是将科学家在传统实验室完成的工作,赋予更多人使用,降低使用门槛,让更多的开发者、业务人员能够使用人工智能。”
但如今,人工智能在各个领域的发展并不均衡。
例如无人驾驶、人脸识别及机器人等领域,因其算法与目的都很明确,又因媒体过多的关注以及推动,再加上资本与数据的聚焦,十分容易达成尽如人意的实践成果。
相反来说,面对算法纷繁复杂、数据私有的商业智能领域,AI应用程度更是参差不齐。
但从实用场景出发,例如打车软件、测序基因、互联网快递等,这些才是AI实际帮助我们解决问题的日常。
手机、汽车从诞生到大规模量产的事实表明,新技术的发展历程往往经历数十年乃至上百年,AI的量产也同样面临着困难重重。
相关数据显示,到2020年,市场对AI应用的需求将增长300%。旺盛的需求、偏少的人才供给,将会导致AI人才成本急剧高昂,只有通过升级大规模生产工具,才有望满足需求。
就在不久之前的全球人工智能大会上,Google对此提出的解决路径也是供给规模化的AI工具。
无独有偶,天云大数据同样提出了解决问题的规模化AI工具, 通过构建支持Auto Machine Learning特性的PaaS化AI平台MaximAI,尝试为客户做AI赋能