tf.argmax() axis解释

axis最简单的解释就是返回最大的那个数值的下标,但是新手不好理解。

下面详细解释:

现在有一个张量

a = [1,2,3],是个一维张量

tf.argmax(a,0) 返回值为2,此时表示返回张量a第一个维度中最大元素的下标,a只有一维,最大元素为3,其下标为2(下标从0开始数)

tf.argmax(a,1) 这个会报错,因为a是一维张量,axis=0代表第一维度,axis=1代表第二维度,当然会报错

现在又有一个张量

b = [

         [1,8,2],

         [4,1,9],

         [7,5,3]

       ]

b是个3*3的二维张量,此时一般人会说,axis=0表示行上最大值的坐标,axis=1表示列上最大值的坐标,但是张量达到三维以上时,这种理解就没法推广了。

此处我还是把这种理解说一下,方便对比:

按照axis=0,1分别对应行,列最大值的说法

tf.argmax(b,0) = [2,0,1],解释为

    取第一列作对比,即1,4,7作比较,结果7最大,其下标为2;

    取第二列作对比,即8,1,5作比较,结果8最大,其下标为0;

    取第三列作对比,即2,9,3作比较,结果9最大,其下标为1;

    结果即为[2,0,1]

tf.argmax(b,1) = [1,2,0],解释为

    取第一行作对比,即1,8,2作比较,结果8最大,其下标为1;

    取第二行作比较,即4,1,9作比较,结果9最大,其下标为2;

    取第三行作比较,即7,5,3作比较,结果7最大,其下标为0;

    结果即为[1,2,0]

这种解释方式适合张量是一维,二维的情况,三维则不好理解

 

以下是我认为更正确的理解,还是以张量b来说明:

    tf.argmax(b,0)表示第1维求最大值下标

    tf.argmax(b,1)表示求第2维最大值下标

为了说明方便,假设

    row1 = [1,8,2]        #张量b的第一行

    row2 = [4,1,9]        #张量b的第二行

    row3 = [7,5,3]        #张量b的第三行

此时张量b表示为

    b = [row1,row2,row3]

当axis=0时,tf.argmax(b,0) 求第一维最大值下标,即求row1,row2,row3最大值下标。

如果row1=1,row2=2,row3=3,则相当于最前面定义的张量a = [1,2,3],此时row3=3最大,下标为2。

现在row1,row2,row3为一维张量,而不是一个值,他们之间比较大小,只能分别取相同位置的元素分别对比。

比如row1,row2, row3分别取第一个元素对比,即1,4,7对比,得最大值下标2;然后分别取第二个元素对比,即8,1,5对比,得最大值下标0;最后分别取第三个元素对比,即2,9,5对比得最大值下标1,所以:

    tf.argmax(b,0) = [2,0,1]

当axis=1时,类似的,tf.argmax(b,1)取第二维数值做对比,假如row1=1,row2=2,row3=3,则相当于最前面定义的张量a=[1,2,3],一维张量求第二维张量的最大值下标,当然会报错

但是当row1 = [1,8,2], row2=[4,1,9], row3=[7,5,3]时,对第二维求最大值下标时,其实是分别求row1,row2,row3这三个张量的最大值下标,row1的最大值为8,下标为1,row2的最大值为9,下标为2,row3的最大值为7,下标为0,则结果为:

tf.argmax(b,1) = [1,2,0]

 

 

 

那么现在很容易推广到更高维度了,比如有个张量c

c = [

         [ [1,8,2],

           [4,1,9],

           [7,5,3] ],

         [ [7,3,8],

           [4,6,5],

           [2,5,0]],

         [ [4,6,1],

           [7,2,9],

           [1,9,2] ] 

       ]

axis=0时,tf.argmax(c,0) 对第一维度求最大值下标,此时令

    c=[row1,row2,row3]

则相当于求row1,row2,row3三者的最大值下标,由于此三者都是二维张量,比较大小只能取相同位置的元素比较,比如

    取row1的第一行第一列为1,row2的第一行第一列为7,row3的第一行第一列为4比较,最大值为7,下标为1

    取row1的第一行第二列为8,row2的第一行第二列为3,row3的第一行第二列为6比较,最大值为8,下标为0

    取row1的第一行第三列为8,row2的第一行第三列为3,row3的第一行第三列为6比较,最大值为8,下标为1

结果为[1,0,1]

    取row1的第二行第一列为4,row2的第二行第一列为4,row3的第二行第一列为7比较,最大值为7,下标为2

    取row1的第二行第二列为9,row2的第二行第二列为5,row3的第二行第二列为9比较,最大值为9,下标为0

    取row1的第二行第三列为1,row2的第二行第三列为6,row3的第二行第三列为2比较,最大值为6,下标为1

结果为[2,0,1]

     取row1的第三行第一列为7,row2的第三行第一列为2,row3的第三行第一列为1比较,最大值为7,下标为0

     取row1的第三行第二列为5,row2的第三行第二列为5,row3的第三行第二列为9比较,最大值为7,下标为2

     取row1的第三行第三列为3,row2的第三行第三列为0,row3的第三行第三列为2比较,最大值为3,下标为0

结果为[0,2,0]

三个结果合并在一起为最终结果

tf.argmax(c,0)=[ [1,0,1], [2,0,1], [0,2,0] ]

另外,当axis=1,axis=2时,row1,row2,row3各自内部作比较

row1内部作比较得到[2,0,1],有没有注意到row1=b,b是前面定义的张量,求row1的最大值下标与求b的最大值下标相同

求row2的最大值下标为[0,1,0]

求row3得最大值下标为[1,2,1]

合并在一起

tf.argmax(c,1) = [ [2,0,1], [0,1,0], [0,2,0] ]

 

axis = 2时,第三维度内比较,即1,8,2作比较,4,1,9作比较,以此类推,得到结果

tf.argmax(c,2) = [ [1,2,0], [2,1,1], [1,2,1] ]

 

如此理解就很清晰了。

 

 

 

 

    

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值