axis最简单的解释就是返回最大的那个数值的下标,但是新手不好理解。
下面详细解释:
现在有一个张量
a = [1,2,3],是个一维张量
tf.argmax(a,0) 返回值为2,此时表示返回张量a第一个维度中最大元素的下标,a只有一维,最大元素为3,其下标为2(下标从0开始数)
tf.argmax(a,1) 这个会报错,因为a是一维张量,axis=0代表第一维度,axis=1代表第二维度,当然会报错
现在又有一个张量
b = [
[1,8,2],
[4,1,9],
[7,5,3]
]
b是个3*3的二维张量,此时一般人会说,axis=0表示行上最大值的坐标,axis=1表示列上最大值的坐标,但是张量达到三维以上时,这种理解就没法推广了。
此处我还是把这种理解说一下,方便对比:
按照axis=0,1分别对应行,列最大值的说法
tf.argmax(b,0) = [2,0,1],解释为
取第一列作对比,即1,4,7作比较,结果7最大,其下标为2;
取第二列作对比,即8,1,5作比较,结果8最大,其下标为0;
取第三列作对比,即2,9,3作比较,结果9最大,其下标为1;
结果即为[2,0,1]
tf.argmax(b,1) = [1,2,0],解释为
取第一行作对比,即1,8,2作比较,结果8最大,其下标为1;
取第二行作比较,即4,1,9作比较,结果9最大,其下标为2;
取第三行作比较,即7,5,3作比较,结果7最大,其下标为0;
结果即为[1,2,0]
这种解释方式适合张量是一维,二维的情况,三维则不好理解
以下是我认为更正确的理解,还是以张量b来说明:
tf.argmax(b,0)表示第1维求最大值下标
tf.argmax(b,1)表示求第2维最大值下标
为了说明方便,假设
row1 = [1,8,2] #张量b的第一行
row2 = [4,1,9] #张量b的第二行
row3 = [7,5,3] #张量b的第三行
此时张量b表示为
b = [row1,row2,row3]
当axis=0时,tf.argmax(b,0) 求第一维最大值下标,即求row1,row2,row3最大值下标。
如果row1=1,row2=2,row3=3,则相当于最前面定义的张量a = [1,2,3],此时row3=3最大,下标为2。
现在row1,row2,row3为一维张量,而不是一个值,他们之间比较大小,只能分别取相同位置的元素分别对比。
比如row1,row2, row3分别取第一个元素对比,即1,4,7对比,得最大值下标2;然后分别取第二个元素对比,即8,1,5对比,得最大值下标0;最后分别取第三个元素对比,即2,9,5对比得最大值下标1,所以:
tf.argmax(b,0) = [2,0,1]
当axis=1时,类似的,tf.argmax(b,1)取第二维数值做对比,假如row1=1,row2=2,row3=3,则相当于最前面定义的张量a=[1,2,3],一维张量求第二维张量的最大值下标,当然会报错
但是当row1 = [1,8,2], row2=[4,1,9], row3=[7,5,3]时,对第二维求最大值下标时,其实是分别求row1,row2,row3这三个张量的最大值下标,row1的最大值为8,下标为1,row2的最大值为9,下标为2,row3的最大值为7,下标为0,则结果为:
tf.argmax(b,1) = [1,2,0]
那么现在很容易推广到更高维度了,比如有个张量c
c = [
[ [1,8,2],
[4,1,9],
[7,5,3] ],
[ [7,3,8],
[4,6,5],
[2,5,0]],
[ [4,6,1],
[7,2,9],
[1,9,2] ]
]
axis=0时,tf.argmax(c,0) 对第一维度求最大值下标,此时令
c=[row1,row2,row3]
则相当于求row1,row2,row3三者的最大值下标,由于此三者都是二维张量,比较大小只能取相同位置的元素比较,比如
取row1的第一行第一列为1,row2的第一行第一列为7,row3的第一行第一列为4比较,最大值为7,下标为1
取row1的第一行第二列为8,row2的第一行第二列为3,row3的第一行第二列为6比较,最大值为8,下标为0
取row1的第一行第三列为8,row2的第一行第三列为3,row3的第一行第三列为6比较,最大值为8,下标为1
结果为[1,0,1]
取row1的第二行第一列为4,row2的第二行第一列为4,row3的第二行第一列为7比较,最大值为7,下标为2
取row1的第二行第二列为9,row2的第二行第二列为5,row3的第二行第二列为9比较,最大值为9,下标为0
取row1的第二行第三列为1,row2的第二行第三列为6,row3的第二行第三列为2比较,最大值为6,下标为1
结果为[2,0,1]
取row1的第三行第一列为7,row2的第三行第一列为2,row3的第三行第一列为1比较,最大值为7,下标为0
取row1的第三行第二列为5,row2的第三行第二列为5,row3的第三行第二列为9比较,最大值为7,下标为2
取row1的第三行第三列为3,row2的第三行第三列为0,row3的第三行第三列为2比较,最大值为3,下标为0
结果为[0,2,0]
三个结果合并在一起为最终结果
tf.argmax(c,0)=[ [1,0,1], [2,0,1], [0,2,0] ]
另外,当axis=1,axis=2时,row1,row2,row3各自内部作比较
row1内部作比较得到[2,0,1],有没有注意到row1=b,b是前面定义的张量,求row1的最大值下标与求b的最大值下标相同
求row2的最大值下标为[0,1,0]
求row3得最大值下标为[1,2,1]
合并在一起
tf.argmax(c,1) = [ [2,0,1], [0,1,0], [0,2,0] ]
axis = 2时,第三维度内比较,即1,8,2作比较,4,1,9作比较,以此类推,得到结果
tf.argmax(c,2) = [ [1,2,0], [2,1,1], [1,2,1] ]
如此理解就很清晰了。