埃瓦里斯特·伽罗瓦Évariste Galois

伽罗瓦生平
埃瓦里斯特·伽罗瓦,法国数学家,现代群论创始人之一。其数学才华在其短暂的生命中未能得到认可,直至去世后其工作才被理解与赞赏。伽罗瓦理论奠定了代数与数论的基础。

 

埃瓦里斯特·伽罗瓦Évariste Galois1811年10月25日1832年5月31日法语发音[evaʀist galwa]),法国数学家,与尼尔斯·阿贝尔并称为现代群论的创始人。在一次几近自杀的决斗中英年早逝,引起种种揣测。

伽罗瓦的父母都是知识分子,12岁以前,伽罗瓦的教育全部由他的母亲负责,他的父亲在伽罗瓦4岁时被选为Bourg La Reine的市长。

12岁,伽罗瓦进入路易皇家中学就读,成绩都很好,却要到16岁才开始跟随 Vernier 老师学习数学,他对数学的热情剧然引爆,对于其他科目再也提不起任何兴趣。校方描述此时的伽罗瓦是“奇特、怪异、有原创力又封闭”。

1827年,16岁的伽罗瓦自信满满地投考他理想中的(学术的与政治的)大学:综合工科学校,却因为颟顸无能的主考官而名落孙山。

1829年,伽罗瓦将他在代数方程解的结果呈交给法国科学院,由奥古斯丁·路易·柯西(Augustin Louis Cauchy) 负责审阅,柯西却将文章连同摘要都弄丢了(19世纪的两个短命数学天才阿贝尔与伽罗瓦不约而同地都“栽”在柯西手中)。

更糟糕的是,当伽罗瓦第二次要报考综合工科大学时,他的父亲却因为被人在选举时恶意中伤而自杀。正直父亲的冤死,影响他考试失败,也导致他的政治观与人生观更趋向极端。

伽罗瓦进入高等师范学院(Ecole Normale Supérieure)就读,次年他再次将方程式论的结果,写成三篇论文,争取当年科学院的数学大奖,但是文章在送到让·巴普蒂斯·约瑟夫·傅里叶手中后,却因傅里叶过世又遭蒙尘,伽罗瓦只能眼睁睁看着大奖落入阿贝尔与卡尔·雅各比(Carl Jacobi)的手中。

1830年七月革命发生,保皇势力出亡,高等师范校长将学生锁在高墙内,引起伽罗瓦强烈不满,12月伽罗瓦在校报上抨击校长的作法,因此被学校退学。由于强烈支持共和主义,从1831年5月后,伽罗瓦两度因政治原因下狱,也曾企图自杀。

据说1832年3月他在狱中结识一个医生的女儿并陷入狂恋,因为这段感情,他陷入一场决斗,自知必死的伽罗瓦在决斗前夜将他的所有数学成果狂笔疾书纪录下来,并时不时在一旁写下“我没有时间”,第二天他果然在决斗中身亡,时间是1832年5月31日。这个传说富浪漫主义色彩,为后世史家所质疑[1]

他的朋友 Chevalier 遵照伽罗瓦的遗愿,将他的数学论文寄给卡尔·弗里德里希·高斯与雅各比,但是都石沉大海,要一直到1843年,才由刘维尔肯定伽罗瓦结果之正确、独创与深邃,并在1846年将它发表。

伽罗瓦使用群论的想法去讨论方程式的可解性,整套想法现称为伽罗瓦理论,是当代代数与数论的基本支柱之一。它直接推论的结果十分丰富:

  1. 它系统化地阐释了为何五次以上之方程式没有公式解,而四次以下有公式解。
  2. 他漂亮地证明高斯的论断:若用尺规作图能作出正 p 边形,p 为质数(所以正十七边形可做图)。
  3. 他解决了古代三大作图问题中的两个:“不能任意三等分角”,“倍立方不可能”。
卷积神经网络(CNN)是针对多维网格数据(如图像、视频)设计的深度学习架构,其结构灵感来源于生物视觉系统对信息的分层处理机制。该模型通过局部连接、参数共享、层级特征提取等策略,有效捕获数据中的空间模式。以下从结构特性、工作机制及应用维度展开说明: **1. 局部连接与卷积运算** 卷积层利用可学习的多维滤波器对输入进行扫描,每个滤波器仅作用于输入的一个有限邻域(称为感受野),通过线性加权与非线性变换提取局部特征。这种设计使网络能够聚焦于相邻像素间的关联性,从而识别如边缘走向、色彩渐变等基础视觉模式。 **2. 参数共享机制** 同一卷积核在输入数据的整个空间范围内保持参数不变,大幅降低模型复杂度。这种设计赋予模型对平移变换的适应性:无论目标特征出现在图像的任何区域,均可由相同核函数检测,体现了特征位置无关性的建模思想。 **3. 特征降维与空间鲁棒性** 池化层通过对局部区域进行聚合运算(如取最大值或均值)实现特征降维,在保留显著特征的同时提升模型对微小形变的容忍度。这种操作既减少了计算负荷,又增强了特征的几何不变性。 **4. 层级特征抽象体系** 深度CNN通过堆叠多个卷积-池化层构建特征提取金字塔。浅层网络捕获点线面等基础模式,中层网络组合形成纹理部件,深层网络则合成具有语义意义的对象轮廓。这种逐级递进的特征表达机制实现了从像素级信息到概念化表示的自动演进。 **5. 非线性扩展与泛化控制** 通过激活函数(如ReLU及其变体)引入非线性变换,使网络能够拟合复杂决策曲面。为防止过拟合,常采用权重归一化、随机神经元失活等技术约束模型容量,提升在未知数据上的表现稳定性。 **6. 典型应用场景** - 视觉内容分类:对图像中的主体进行类别判定 - 实例定位与识别:在复杂场景中标定特定目标的边界框及类别 - 像素级语义解析:对图像每个像素点进行语义标注 - 生物特征认证:基于面部特征的个体身份鉴别 - 医学图像判读:辅助病灶定位与病理分析 - 结构化文本处理:与循环神经网络结合处理序列标注任务 **7. 技术演进脉络** 早期理论雏形形成于1980年代,随着并行计算设备的发展与大规模标注数据的出现,先后涌现出LeNet、AlexNet、VGG、ResNet等里程碑式架构。现代研究聚焦于注意力分配、跨层连接、卷积分解等方向,持续推动模型性能边界。 卷积神经网络通过其特有的空间特征提取范式,建立了从原始信号到高级语义表达的映射通路,已成为处理几何结构数据的标准框架,在工业界与学术界均展现出重要价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值