伽罗瓦理论

本文详细探讨了伽罗瓦理论中的域扩张与分裂域概念。通过一系列命题和定义,阐述了域扩张的性质,包括有限扩张与代数扩张的关系,以及域扩张中的代数元和最小多项式。还介绍了Kronecker定理,保证了多项式存在包含所有根的域,并定义了分裂域及其存在性。最后,通过实例解释了分裂域的实际应用。
摘要由CSDN通过智能技术生成

伽罗瓦理论---域的扩张与分裂域

命题1.如果域,,,则 是域中不可约.

Proof: 假设不可约,我们证是域。任取中的非零元,只需找到其逆即可。由于非零,则,即,又不可约,

故,从而存在使得,为此我们有

即,这说明。由的任意性知是域。

另一方面假设是域。假设可约,(此处用代替)。则在中有分解式,且。

下面说明是中非零元,否则

则有,即,这与矛盾,故是中非零元。

注意到,即是的零因子,这与假设是域矛盾(域是整环,无零因子)。#

 

命题2.设是域,是次首一不可约多项式(monic irreducible), 设,其中,且设.

(i) 是域,且是同构于的的子域,因此可以看做是域的扩张.

(ii) 是在中的根.

(iii)如果,且是的根,则.

(iv) 是中唯一的以为根的首一不可约多项式.

(v)若将看做上的线性空间,则是的一组基,记为其维数,则.

Proof: (i)命题1已证是域,下找出于之间的同构。取环到其商环的自然同态,取其在下的限制,。下证明是于之间的同构。首先其是同态,且,即亦为满设,又是域,其理想只能是平凡理想,且是的理想,显然只能是,从而是单射,综上是于之间的同构.

(ii),其中,在中把带入得,注意在带入时需利用(i)中的同构把的系数换作,于是我们有:

即是在中的根.

(iii) ,且是的根,假设,则)不可约)存在使得&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值