Description
When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 <= N <= 1000) fields numbered 1..N, the first of which contains his house and the Nth of which contains the big barn. A total M (1 <= M <= 10000) paths that connect the fields in various ways. Each path connects two different fields and has a nonzero length smaller than 35,000.
To show off his farm in the best way, he walks a tour that starts at his house, potentially travels through some fields, and ends at the barn. Later, he returns (potentially through some fields) back to his house again.
He wants his tour to be as short as possible, however he doesn't want to walk on any given path more than once. Calculate the shortest tour possible. FJ is sure that some tour exists for any given farm.
To show off his farm in the best way, he walks a tour that starts at his house, potentially travels through some fields, and ends at the barn. Later, he returns (potentially through some fields) back to his house again.
He wants his tour to be as short as possible, however he doesn't want to walk on any given path more than once. Calculate the shortest tour possible. FJ is sure that some tour exists for any given farm.
Input
* Line 1: Two space-separated integers: N and M.
* Lines 2..M+1: Three space-separated integers that define a path: The starting field, the end field, and the path's length.
* Lines 2..M+1: Three space-separated integers that define a path: The starting field, the end field, and the path's length.
Output
A single line containing the length of the shortest tour.
Sample Input
4 5 1 2 1 2 3 1 3 4 1 1 3 2 2 4 2
Sample Output
6
题意:给定一个无向图,要从1点到n点再返回1点,每条边最多走一次,问最短需要走多远。
思路:设置一个超级源点和超级汇点,超级源点向1连一条容量为2,费用为0的边。
节点n向超级汇点连一条容量为2,费用为0的边。然后对于图中所给的边,连一条容量为1,费用为w的边。注意是双向边。
然后做一次最小费用最大流即可。
#include <iostream> #include <cstdio> #include <cstring> using namespace std; #define maxn 3800 #define maxm 48000 #define inf 0x3f3f3f3f int first[maxn]; int key[108][108]; int vv[maxm],ww[maxm],nxt[maxm],cst[maxm]; int e; int pre[maxn],pos[maxn]; int dis[maxn],que[maxn*10]; bool vis[maxn]; inline int min(int a,int b) { return a > b?b:a; } void addEdge(int u,int v,int w,int cost) { vv[e] = v; ww[e] = w; cst[e] = cost; nxt[e] = first[u]; first[u] = e++; vv[e] = u; ww[e] = 0; cst[e] = -cost; nxt[e] = first[v]; first[v] = e++; } int spfa(int s,int t) { memset(pre,-1,sizeof(pre)); memset(vis,0,sizeof(vis)); int head,tail; head = tail = 0; for(int i = 0;i < maxn;i++) dis[i] = inf; que[tail++] = s; pre[s] = s; dis[s] = 0; vis[s] = 1; while(head < tail) { int u = que[head++]; vis[u] = 0; for(int i = first[u];i != -1;i = nxt[i]) { int v = vv[i]; if(ww[i] > 0 && dis[u] + cst[i] < dis[v]) { dis[v] = dis[u] + cst[i]; pre[v] = u; pos[v] = i; if(!vis[v]) { vis[v] = 1; que[tail++] = v; } } } } return pre[t] != -1; } int MinCostFlow(int s,int t,int flow) { int cost = 0; int nowflow = 0; while(spfa(s,t)) { int f = inf; for(int i = t;i != s;i = pre[i]) if(ww[pos[i]] < f) f = ww[pos[i]]; f = min(flow - nowflow,f); nowflow += f; cost += dis[t]*f; for(int i = t;i != s;i = pre[i]) { ww[pos[i]] -= f; ww[pos[i]^1] += f; } if(nowflow == flow) break; } return cost; } int main() { //freopen("in.txt","r",stdin); int n,m; while(scanf("%d%d",&n,&m)==2) { memset(first,-1,sizeof(first)); e = 0; for(int i = 1;i <= m;i++) { int u,v,w; scanf("%d%d%d",&u,&v,&w); addEdge(u,v,1,w); addEdge(v,u,1,w); } addEdge(0,1,2,0); addEdge(n,n+1,2,0); printf("%d\n",MinCostFlow(0,n+1,2)); } return 0; }