DB-GPT系列(六):数据Agent开发part1-光速创建AWEL Agent应用

前面的系列文章介绍了:

DB-GPT的总体功能

DB-GPT部署(镜像一键部署、源码部署)

DB-GPT底层模型设置(开源模型、在线模型)

DB-GPT的基础对话、知识库对话、excel对话

DB-GPT的数据库对话、数据对话、仪表盘对话

通过这些内容,我们已经可以进行一些简单的数据对话分析,覆盖了excel数据文件、数据库、知识库、数据分析报告等常见且重要的数据分析场景。

接下来的几篇文章将介绍DB-GPT的数据Agent开发的内容。

一、为什么需要进行数据Agent开发

虽然DB-GPT提供了一系列的AI数据分析的产品功能(链接DB-GPT六大基础应用场景),可以在此基础上进行数据分析。但是,实际业务分析场景中,往往会涉及更加复杂的数据分析任务。这些复杂任务可能涉及用户意图识别、外部工具调用、复杂聚合逻辑、多分支工作流等。在这些复杂情况下,DB-GPT原生的数据分析功能就难以一一覆盖。

因此,DB-GPT开源了一整套Agent搭建框架,通过AWEL(Agentic Workflow Expression Language) ,也就是智能体工作流编排,让围绕数据库构建大模型应用更简单,更方便。

DB-GPT六大基础应用场景,实际上就是不同的Agent,例如ChatData其实就是一个能够链接多种不同类型数据库并进行SQL代码编写和执行的Agent,而ChatKnowledge则是一个基于RAG的私有知识库问答Agent。

二、Agent与AWEL的关系

AWEL(Agentic Workflow Expression Language)是是 DB-GPT 的工作流程编排语言,简洁灵活地定义Agents 间交互与任务执行。实际上AWEL是一套专为大模型应用开发设计的智能体工作流表达语言,提供了强大的功能和灵活性。

三、AWEL简要介绍

1、AWEL特点

AWEL有下面一些特点:

  • 分层设计&#
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灰哥数据智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值