DB-GPT系列(三):底层大模型设置(开源模型、在线模型)

前面两篇文章分别对 DB-GPT 的总体情况进行了介绍,同时涵盖了镜像一键部署与源码部署这两种部署方式。

DB-GPT系列(一):DB-GPT能帮你做什么?

DB-GPT系列(二):DB-GPT部署(镜像一键部署、源码部署)

当DB-GPT 搭建完成后,怎么修改使用自己需要的大模型?本文将聚焦于DB-GPT底层大模型的修改,包括修改使用开源模型与在线模型。

一、使用在线大模型

1、修改.env文件

该文件在DB-GPT/主目录下

.env文件中修改LLM_MODEL在线大模型名称、PROXY_API_URL在线大模型的API调用地址、API_KEY在线大模型的API_KEY

OpenAI设置

LLM_MODEL=chatgpt_proxyllm
PROXY_API_KEY={your-openai-sk}
PROXY_SERVER_URL=https://api.openai.com/v1/chat/completions
# 如果使用gpt-4
# PROXYLLM_BACKEND=gpt-4

通义千问设置

LLM_MODEL=tongyi_proxyllm
TONGYI_PROXY_API_KEY={your-tongyi-sk}
PROXY_SERVER_URL={your_service_url}

智谱清言设置

LLM_MODEL=zhipu_proxyllm
PROXY_SERVER_URL={your_service_url}
ZHIPU_MODEL_VERSION={version}
ZHIPU_PROXY_API_KEY={your-zhipu-sk}

文心设置

LLM_MODEL=wenxin_proxyllm
PROXY_SERVER_URL={your_service_url}
WEN_XIN_MODEL_VERSION={version}
WEN_XIN_API_KEY={your-wenxin-sk}
WEN_XIN_API_SECRET={your-wenxin-sct}

Gemini设置

LLM_MODEL=gemini_proxyllm
GEMINI_PROXY_API_KEY={your_api_key}

2、在线大模型的API配置信息获取(以智谱清言为例)

(1)在线大模型的API调用地址查找

在智谱清言的的AI开放平台中,可以找到接口文档,并在接口文档中找到GLM-4的请求URL地址。

网址:智谱AI开放平台

(2)在线大模型的API_KEY获取

在智谱清言的的AI开放平台中进行注册登录

网址:智谱AI开放平台

在个人中心添加新的API key或者复制已有的API key

最后的配置如下

LLM_MODEL=zhipu_proxyllm
PROXY_SERVER_URL=https://open.bigmodel.cn/api/paas/v4/chat/completions
ZHIPU_MODEL_VERSION=glm-4
ZHIPU_PROXY_API_KEY=YOUR_API_KEY

3、重新启动DB-GPT

最后,重新启动DB-GPT

# 进入DB-GPT主目录
cd /DB-GPT
# 启动DB-GPT
python dbgpt/app/dbgpt_server.py

检查DB-GPT是不是有修改后的大模型

二、使用开源大模型

1、下载开源大模型

步骤:安装git-lfs-->创建模型存放目录-->在目录中开源大模型

首先确保安装了git-lfs,避免下载大文件时候出现超时的情况。

git-lfs安装命令:

● CentOS安装:  yum install git-lfs
● Ubuntu安装:  apt-get install git-lfs
● MacOS安装:  brew install git-lfs

创建模型存放目录,并在目录中开源大模型

# 进入DB-GPT主目录
cd DB-GPT

# 创建models文件夹并进入
mkdir models
cd models

# 下载开源大模型,下面是下载Qwen2.5-14B模型
git clone https://www.modelscope.cn/Qwen/Qwen2.5-14B-Instruct.git
# 其他开源大模型
# 百川
# git clone https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat
# chatglm2
# git clone https://huggingface.co/THUDM/chatglm2-6b

具体各类开源大模型对应的硬件需求,后续会专门写一篇文章说明。

2、修改配置文件

步骤:修改.env文件-->修改model_config.py 文件

.env 文件则定义了DB-GPT项目运行方式

model_config.py 文件定义了模型名称和模型路径的映射关系

(1)修改.env文件,该文件在DB-GPT/主目录下

LLM_MODEL=Qwen2.5-14B-Instruct

(2)修改model_config.py 文件,该文件在DB-GPT/dbgpt/configs/目录下

打开model_config.py文件,找到LLM_MODEL_CONFIG如下图所示。

LLM_MODEL_CONFIG是一个字典,其中Key是模型名称,value是模型文件名称

搜索下载大模型,有没有相应配置,例如前面下载的Qwen2.5-14B-Instruct,以及对应的模型文件是不是一致。如无配置,则需要手动添加。

3、重新启动DB-GPT

最后,重新启动DB-GPT

# 进入DB-GPT主目录
cd /DB-GPT
# 启动DB-GPT
python dbgpt/app/dbgpt_server.py

检查DB-GPT是不是有修改后的大模型

<think>好的,我需要回答用户关于DB-GPT如何调用已部署大模型接口的问题。首先,根据用户提供的引用内容,特别是引用[4],其中提到DB-GPT支持设置底层大模型,包括开源模型在线模型。用户想知道具体的调用方法,我需要结合这些引用信息来构建答案。 首先,我应该明确DB-GPT的架构是否支持外部模型接口的调用。根据引用[2],DB-GPT是一个集成多种技术的框架,支持数据处理、问答等功能,并且强调模型管理。这说明它可能有模块化的设计,允许集成不同的模型。 接下来,引用[4]提到DB-GPT有两种部署方式,并且可以设置底层大模型,包括开源模型如LLAMA、ChatGLM等,以及在线模型GPT-3.5。这说明用户可以通过配置来选择使用本地部署模型在线API。因此,调用已部署大模型接口可能涉及修改配置文件,指定模型的访问地址和API密钥。 然后,我需要考虑具体的配置步骤。例如,在DB-GPT的配置文件中,可能有相关的参数设置,如模型名称、API端点、认证信息等。用户需要编辑这些配置文件,填入已部署模型的URL和必要的密钥,以确保DB-GPT能够正确调用接口。 此外,引用[3]提到DB-GPT-Hub的扩展插件系统,允许添加新的数据源和模型。这可能意味着用户可以通过开发或安装插件来扩展支持的模型接口,但具体是否需要编程取决于插件的现有情况。如果已有插件支持目标模型,用户可能只需配置即可;否则可能需要自行开发插件。 还需要考虑认证和安全性。根据引用[2],DB-GPT重视隐私安全,因此在调用外部接口时可能需要配置HTTPS、API密钥管理等安全措施,确保数据传输的安全性。 最后,总结步骤:首先确定已部署模型的类型(开源在线),然后修改DB-GPT模型配置文件,设置API地址和认证信息,最后通过DB-GPT的接口进行调用。同时,可能需要利用插件系统来扩展支持更多的模型接口。 需要验证这些步骤是否在用户提供的引用中有依据,确保回答的准确性。例如,引用[4]明确提到修改底层模型设置,因此配置文件的调整是必须的。而插件系统(引用[3])则为扩展功能提供了可能。因此,回答应结合这些点,分步骤说明调用方法,并引用相关来源。</think>DB-GPT支持调用已部署大模型接口,具体方法可通过以下步骤实现: ### 1. **确认模型部署类型** - 若已部署模型为**本地开源模型**(如LLAMA、ChatGLM等),需通过DB-GPT的配置文件指定模型路径和加载方式[^4]。 - 若调用的是**在线模型接口**(如GPT-3.5、文心一言等),需在配置中填写API地址和密钥。 ### 2. **修改模型配置文件** -DB-GPT的配置文件(如`models/config.yaml`)中,找到`model_providers`或`llm_backend`相关配置项。 - 示例配置: ```yaml # 本地模型配置示例 local_model: name: "chatglm3-6b" path: "/path/to/your/model" device: "cuda:0" # 指定运行设备 # 在线模型配置示例 openai_api: api_key: "sk-xxx" # 替换为实际API密钥 base_url: "https://api.openai.com/v1" # 接口地址 ``` ### 3. **通过插件扩展调用能力** - 使用DB-GPT-Hub的扩展插件系统,可集成自定义模型接口。例如,通过开发`custom_model_adapter.py`实现接口适配,并注册到插件管理中[^3]。 - 示例插件代码片段: ```python from dbgpt_hub import ModelAdapter class CustomModelAdapter(ModelAdapter): def generate(self, prompt: str): # 调用已部署模型的API response = requests.post( "https://your-model-api.com/v1/completions", headers={"Authorization": "Bearer YOUR_API_KEY"}, json={"prompt": prompt} ) return response.json()["text"] ``` ### 4. **接口调用验证** -DB-GPT的对话界面或API中测试调用,例如输入SQL生成请求: ```bash curl -X POST http://localhost:5000/api/v1/chat \ -H "Content-Type: application/json" \ -d '{"query": "统计2023年销售额", "model": "chatglm3-6b"}' ``` ### 5. **安全与权限管理** - 对于在线接口,需在DB-GPT管理界面配置API密钥的访问权限,并启用HTTPS加密通信[^2]。 - 通过`dbgpt_acl`模块限制敏感模型的调用权限,例如: ```python from dbgpt_security import ACLManager ACLManager().add_rule(model="gpt-4", allowed_roles=["admin"]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灰哥数据智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值