深度学习 | 计算机视觉在智能交通领域应用的五个方向

本文探讨了计算机视觉在智能交通领域的五个关键应用:车辆检测与感知,车辆身份特征识别,车辆比对,交通视频分析以及无人驾驶和汽车辅助驾驶。深度学习技术提升了车辆检测的准确性,实现了车辆身份的多维度识别,有效解决了交通事件检测和车辆行为分析的问题,并为汽车驾控提供了可能。
摘要由CSDN通过智能技术生成

计算机识别可以给智能交通带来什么

我认为计算机视觉能给交通带来的主要有如下几个方面:第一个是感知,对于我们车辆而言就是车辆的检测,第二个是车辆身份的识别,第三是车辆身份的比对,第四个是车辆的行为分析,第五个是驾控,也就是现在非常火的汽车辅助驾驶与无人驾驶。 

  • 第一,车辆检测与感知 

检测就是计算机通过图片或者视频,把其中的车辆或其他关注目标准确的“框”出来,检测是很多系统的基础。在2012年以前,很多智能交通系统中用的检测采用的是一种基于运动的检测,这种检测会受天气、光线等方面的影响,在不同天气下会存在很多问题。而基于深度学习的检测,是基于车辆的轮廓和形态的检测,是完全模拟人看车的方式,只要人眼可以辨识那是一辆车,就可以“框”出来,这个就可以解决很多过去车辆检测中存在的问题,排除了天气光线等来带的干扰。从检测感知角度,我觉得有以下几个方面的细分应用。

第一个是路口的感知

目前的中国很多城市交通拥堵很严重,很多十字路口的红绿灯配时其实并不是最优的,通过基于深度学习的车辆精确感知检测,可以精准的感知交通路口各个方向的车辆数量、流量和密度,从而可以给交通路口的最优配时提供准确依据。如果各个路口都用上这种车辆检测技术,那对交通拥堵将是极大的缓解。 

4.png

这张图是我们的检测结果,是基于纯图片的检测方式,而不是基于运动的方式,干扰会大大降低,部分遮挡也不影响车辆检测,同时成本也非常低,可以利用现有的已建电子警察、反向卡口或监控摄像头的视频图像。 

5.png

第二个就是路段的感知

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值